scholarly journals On the stability of finding approximate fixed points by simplicial methods

2016 ◽  
Vol 2016 (1) ◽  
Author(s):  
Qi-Qing Song ◽  
Hui Yang ◽  
Guang-Hui Yang ◽  
Chong-Yi Zhong
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
András L. Szabó ◽  
Bitan Roy

Abstract We compute the effects of strong Hubbardlike local electronic interactions on three-dimensional four-component massless Dirac fermions, which in a noninteracting system possess a microscopic global U(1) ⊗ SU(2) chiral symmetry. A concrete lattice realization of such chiral Dirac excitations is presented, and the role of electron-electron interactions is studied by performing a field theoretic renormalization group (RG) analysis, controlled by a small parameter ϵ with ϵ = d−1, about the lower-critical one spatial dimension. Besides the noninteracting Gaussian fixed point, the system supports four quantum critical and four bicritical points at nonvanishing interaction couplings ∼ ϵ. Even though the chiral symmetry is absent in the interacting model, it gets restored (either partially or fully) at various RG fixed points as emergent phenomena. A representative cut of the global phase diagram displays a confluence of scalar and pseudoscalar excitonic and superconducting (such as the s-wave and p-wave) mass ordered phases, manifesting restoration of (a) chiral U(1) symmetry between two excitonic masses for repulsive interactions and (b) pseudospin SU(2) symmetry between scalar or pseudoscalar excitonic and superconducting masses for attractive interactions. Finally, we perturbatively study the effects of weak rotational symmetry breaking on the stability of various RG fixed points.


1990 ◽  
Vol 10 (2) ◽  
pp. 209-229 ◽  
Author(s):  
Dov Aharonov ◽  
Uri Elias

AbstractThe stability of a fixed point of an area-preserving transformation in the plane is characterized by the invariant curves which surround it. The existence of invariant curves had been extensively studied for elliptic fixed points. Here we study the similar problem for parabolic fixed points. In particular we are interested in the case where the fixed point is at infinity.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850002 ◽  
Author(s):  
Murli Manohar Verma ◽  
Bal Krishna Yadav

We solve the field equations of modified gravity for [Formula: see text] model in metric formalism. Further, we obtain the fixed points of the dynamical system in phase-space analysis of [Formula: see text] models, both with and without the effects of radiation. The stability of these points is studied against the perturbations in a smooth spatial background by applying the conditions on the eigenvalues of the matrix obtained in the linearized first-order differential equations. Following this, these fixed points are used for analyzing the dynamics of the system during the radiation, matter and acceleration-dominated phases of the universe. Certain linear and quadratic forms of [Formula: see text] are determined from the geometrical and physical considerations and the behavior of the scale factor is found for those forms. Further, we also determine the Hubble parameter [Formula: see text], the Ricci scalar [Formula: see text] and the scale factor [Formula: see text] for these cosmic phases. We show the emergence of an asymmetry of time from the dynamics of the scalar field exclusively owing to the [Formula: see text] gravity in the Einstein frame that may lead to an arrow of time at a classical level.


2021 ◽  
pp. 32-37
Author(s):  
Andrei A. Burdakin ◽  
Valerii R. Gavrilov ◽  
Ekaterina A. Us ◽  
Vitalii S. Bormashov

The problem of ensuring stability of Earth observation space-borne instruments undertaking long-term temperature measurements within thermal IR spectral range is described. For in-flight reliable control of the space-borne IR instruments characteristics the stability of onboard reference sources should be improved. The function of these high-stable sources will be executed by novel onboard blackbodies, incorporating the melt↔freeze phase transition phenomenon, currently being developed. As a part of these works the task of realizing an on-orbit calibration scale within the dynamic temperature range of Earth observation systems 210−350 K based on fixed-point phase transition temperatures of a number of potentially suitable substances is advanced. The corresponding series of the onboard reference blackbodies will be set up on the basis of the on-orbit calibration scale fixed points. It is shown that the achievement of the target lies in carrying out a number of in-flight experiments with the selected fixed points and the prospective onboard fixed-point blackbodies prototypes. The new In-Bi eutectic alloy melt temperature fixed point (~345 K) is proposed as the significant fixed points of the future on-orbit calibration scale. The results of the new fixed point preliminary laboratory studies have been analyzed. The results allowed to start preparation of the in-flight experiments investigating the In-Bi alloy for the purpose of its application in the novel onboard reference sources.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 390 ◽  
Author(s):  
Wissam Kassab ◽  
Teodor Ţurcanu

In this paper, we study an iteration process introduced by Thakur et al. for Suzuki mappings in Banach spaces, in the new context of modular vector spaces. We establish existence results for a more recent version of Suzuki generalized non-expansive mappings. The stability and data dependence of the scheme for ρ -contractions is studied as well.


2008 ◽  
Vol 15 (3-4) ◽  
pp. 355-368 ◽  
Author(s):  
Benjamın Vazquez-Gonzalez ◽  
Gerardo Silva-Navarro

In this work we study the frequency and dynamic response of a damped Duffing system attached to a parametrically excited pendulum vibration absorber. The multiple scales method is applied to get the autoparametric resonance conditions and the results are compared with a similar application of a pendulum absorber for a linear primary system. The approximate frequency analysis reveals that the nonlinear dynamics of the externally excited system are suppressed by the pendulum absorber and, under this condition, the primary Duffing system yields a time response almost equivalent to that obtained for a linear primary system, although the absorber frequency response is drastically modified and affected by the cubic stiffness, thus modifying the jumps defined by the fixed points. In the absorber frequency response can be appreciated a good absorption capability for certain ranges of nonlinear stiffness and the internal coupling is maintained by the existing damping between the pendulum and the primary system. Moreover, the stability of the coupled system is also affected by some extra fixed points introduced by the cubic stiffness, which is illustrated with several amplitude-force responses. Some numerical simulations of the approximate frequency responses and dynamic behavior are performed to show the steady-state and transient responses.


1996 ◽  
Vol 07 (01) ◽  
pp. 19-32 ◽  
Author(s):  
A. LAMURA ◽  
C. MARANGI ◽  
G. NARDULLI

In this paper we analyze replica symmetry breaking in attractor neural networks with non-monotone activation function. We study the non-monotone version of the Edinburgh model, which allows the control of the domains of attraction by the stability parameter K, and we compute, at one step of symmetry breaking, storage capacity and, for the strongly dilute model, the domains of attraction of the stable fixed points.


Sign in / Sign up

Export Citation Format

Share Document