type equation
Recently Published Documents


TOTAL DOCUMENTS

1787
(FIVE YEARS 494)

H-INDEX

38
(FIVE YEARS 7)

2022 ◽  
Vol 3 (1) ◽  
pp. 37-45
Author(s):  
Jimit Patel ◽  
◽  
G. M. Deheri ◽  

This paper deals with a theoretical analysis on the effect of viscosity variation on a ferrofluid based long bearing. The model of Tipei considering viscosity variation is deployed here. The magnetic fluid flow is governed by Neuringer-Rosensweig model. The pressure distribution is obtained after solving the associated Reynolds type equation, which gives the load carrying capacity. The computed results indicate that the increased load carrying capacity owing to magnetization gets negligible help from the effect of viscosity variation.


2022 ◽  
Vol 155 ◽  
pp. 111694
Author(s):  
Gangwei Wang ◽  
Abdul-Majid Wazwaz
Keyword(s):  

Author(s):  
V. V. Rusakov ◽  
Y. L. Raikher

A model is developed to describe the oscillations of optical anisotropy induced in a viscoelastic ferrocolloid (nanodispersion of magnetic particles) by an AC magnetic field. The viscoelasticity of the matrix (carrier medium) is assumed to obey the Jeffreys rheological scheme, whose advantage is that with the aid of just two viscous parameters and a single one for elasticity it enables one to vary the retarded mechanical response of the carrier from a weakly Maxwellian fluid to a medium with the rheology of a Kelvin gel. As the orientational motion of the particles driven by the AC field is always strongly affected by thermal motion, the occurring process is described with the aid of a kinetic (Fokker–Planck type) equation that combines diffusional and drift terms. On this basis, an exact evolution equation for the macroscopic optical anisotropy of a ferrocolloid is derived that is, however, just one link in an infinite chain of equations for statistical moments. The solution is obtained by applying effective field approximation: reducing the number of moment equations to their minimum and closing the chosen set. This solution is substituted to the scheme of a standard polarimetric set-up, and it is demonstrated how the peculiarities imparted by viscoelasticity should manifest themselves on the intensity of the light transmitted through the set up containing a ferrocolloid sample. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


2022 ◽  
Vol 137 (1) ◽  
Author(s):  
Jinxi Fei ◽  
Zhengyi Ma ◽  
Weiping Cao
Keyword(s):  

2022 ◽  
Vol 52 (1) ◽  
pp. 43-48
Author(s):  
Ibrahim Doymaz

The effect of different infrared (IR) powers on drying of orange slices was investigated in infrared dryer. The orange slices dried at 62, 74 and 88 W infrared powers and constant slice thickness of 6 mm. Results showed that drying, colour and rehydration characteristics of orange slices were greatly influenced by infrared power. The drying data were fitted with five mathematical models available in the literature. Based on the statistical tests applied to make an assessment, the model of Midilli and Kucuk was found to satisfactorily explain drying kinetics of orange slices for all drying conditions. The Fick’s diffusion model was used to calculate the effective moisture diffusivity (Deff) of orange slices. The value of Deff varied from 1.59×10-10 to 2.49×10-10 m2/s. It was found that the effective moisture diffusivities increased with increasing IR power. Activation energy was estimated by a modified Arrhenius type equation as 2.11 kW/kg. As the infrared power increased, the rehydration ratio was found to be reduced. Furthermore, with increase of infrared power, the values of a and DE increased, whereas the values of L, b and C decreased.


2022 ◽  
Vol 7 (4) ◽  
pp. 5768-5789
Author(s):  
José L. Díaz ◽  

<abstract><p>It is the objective to provide a mathematical treatment of a model to predict the behaviour of an invasive specie proliferating in a domain, but with a certain hostile zone. The behaviour of the invasive is modelled in the frame of a non-linear diffusion (of Porous Medium type) equation with non-Lipschitz and heterogeneous reaction. First of all, the paper examines the existence and uniqueness of solutions together with a comparison principle. Once the regularity principles are shown, the solutions are studied within the Travelling Waves (TW) domain together with stability analysis in the frame of the Geometric Perturbation Theory (GPT). As a remarkable finding, the obtained TW profile follows a potential law in the stable connection that converges to the stationary solution. Such potential law suggests that the pressure induced by the invasive over the hostile area increases over time. Nonetheless, the finite speed, induced by the non-linear diffusion, slows down a possible violent invasion.</p></abstract>


Author(s):  
Daniela D. de F. Leite ◽  
Alexandre J. de M. Queiroz ◽  
Rossana M. F. de Figueirêdo ◽  
Francislaine S. dos Santos ◽  
Semirames do N. Silva ◽  
...  

ABSTRACT Citron watermelon is an agricultural product of excellent economic potential. Its seeds are widely used for oil extraction, serving as an energy source, showing nutritional characteristics that make them a suitable product to be studied. Thus, the objective was to characterize citron watermelon seeds regarding their physicochemical composition, in addition to determining drying kinetics, fitting mathematical models to the data, and determining the effective diffusivity coefficients and thermodynamic properties. The seeds were dried in a convective dryer, varying the drying temperature, with air velocity of 1.0 m s-1. With the increase in drying temperature, there were reductions in moisture content, water activity (aw), ash concentration, total titratable acidity, lipids and reducing sugar. Citron watermelon seeds are rich in lipids and ash, have low sugar concentration and low acidity; their drying kinetics was very well described by the Two Terms and Approximation of Diffusion models, followed by the models of Midilli and Page, which resulted in acceptable fits. Effective diffusivity accompanied the increase in drying temperature, and this behavior was well fitted by an Arrhenius-type equation. Enthalpy and entropy variations were reduced with drying temperature, with increments in Gibbs free energy.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Spiros Kotopoulis ◽  
Mihaela Popa ◽  
Mireia Mayoral Safont ◽  
Elisa Murvold ◽  
Ragnhild Haugse ◽  
...  

The use of ultrasound and microbubbles to enhance therapeutic efficacy (sonoporation) has shown great promise in cancer therapy from in vitro to ongoing clinical studies. The fastest bench-to-bedside translation involves the use of ultrasound contrast agents (microbubbles) and clinical diagnostic scanners. Despite substantial research in this field, it is currently not known which of these microbubbles result in the greatest enhancement of therapy within the applied conditions. Three microbubble formulations—SonoVue®, Sonazoid™, and Optison™—were physiochemically and acoustically characterized. The microbubble response to the ultrasound pulses used in vivo was simulated via a Rayleigh–Plesset type equation. The three formulations were compared in vitro for permeabilization efficacy in three different pancreatic cancer cell lines, and in vivo, using an orthotopic pancreatic cancer (PDAC) murine model. The mice were treated using one of the three formulations exposed to ultrasound from a GE Logiq E9 and C1-5 ultrasound transducer. Characterisation of the microbubbles showed a rapid degradation in concentration, shape, and/or size for both SonoVue® and Optison™ within 30 min of reconstitution/opening. Sonazoid™ showed no degradation after 1 h. Attenuation measurements indicated that SonoVue® was the softest bubble followed by Sonazoid™ then Optison™. Sonazoid™ emitted nonlinear ultrasound at the lowest MIs followed by Optison™, then SonoVue®. Simulations indicated that SonoVue® would be the most effective bubble using the evaluated ultrasound conditions. This was verified in the pre-clinical PDAC model demonstrated by improved survival and largest tumor growth inhibition. In vitro results indicated that the best microbubble formulation depends on the ultrasound parameters and concentration used, with SonoVue® being best at lower intensities and Sonazoid™ at higher intensities.


Sign in / Sign up

Export Citation Format

Share Document