scholarly journals A new viscosity-type iteration for a finite family of split variational inclusion and fixed point problems between Hilbert and Banach spaces

Author(s):  
C. Izuchukwu ◽  
F. O. Isiogugu ◽  
C. C. Okeke

Abstract In this paper, we introduce a new viscosity-type iteration process for approximating a common solution of a finite family of split variational inclusion problem and fixed point problem. We prove that the proposed algorithm converges strongly to a common solution of a finite family of split variational inclusion problems and fixed point problem for a finite family of type-one demicontractive mappings between a Hilbert space and a Banach space. Furthermore, we applied our results to study a finite family of split convex minimization problems, and also considered a numerical experiment of our results to further illustrate its applicability. Our results extend and improve the results of Byrne et al. (J. Nonlinear Convex Anal. 13:759–775, 2012), Kazmi and Rizvi (Optim. Lett. 8(3):1113–1124, 2014), Moudafi (J. Optim. Theory Appl. 150:275–283, 2011), Shehu and Ogbuisi (Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 110(2):503–518, 2016), Takahashi and Yao (Fixed Point Theory Appl. 2015:87, 2015), Chidume and Ezeora (Fixed Point Theory Appl. 2014:111, 2014), and a host of other important results in this direction.

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1161
Author(s):  
Jinhua Zhu ◽  
Jinfang Tang ◽  
Shih-sen Chang ◽  
Min Liu ◽  
Liangcai Zhao

In this paper, we introduce an iterative algorithm for finding a common solution of a finite family of the equilibrium problems, quasi-variational inclusion problems and fixed point problem on Hadamard manifolds. Under suitable conditions, some strong convergence theorems are proved. Our results extend some recent results in literature.


2021 ◽  
Vol 40 (2) ◽  
pp. 525-559
Author(s):  
Chinedu Izuchukwu ◽  
Godwin C. Ugwunnadi ◽  
Oluwatosin Temitope Mewomo

In this paper, we introduce a modified Ishikawa-type proximal point algorithm for approximating a common solution of minimization problem, monotone inclusion problem and fixed point problem. We obtain a strong convergence of the proposed algorithm to a common solution of finite family of minimization problem, finite family of monotone inclusion problem and fixed point problem for asymptotically demicontractive mapping in Hadamard spaces. Numerical example is given to illustrate the applicability of our main result. Our results complement and extend some recent results in literature.


Author(s):  
K. O. Aremu ◽  
C. Izuchukwu ◽  
A. A. Mebawondu ◽  
O. T. Mewomo

In this paper, we introduce a viscosity-type proximal point algorithm comprising of a finite composition of resolvents of monotone bifunctions and a generalized asymptotically nonspreading mapping recently introduced by Phuengrattana [Appl. Gen. Topol. 18 (2017) 117–129]. We establish a strong convergence result of the proposed algorithm to a common solution of a finite family of equilibrium problems and fixed point problem for a generalized asymptotically nonspreading and nonexpansive mappings, which is also a unique solution of some variational inequality problems in an Hadamard space. We apply our result to solve convex feasibility problem and to approximate a common solution of a finite family of minimization problems in an Hadamard space.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3365-3379 ◽  
Author(s):  
Z. Ahmadi ◽  
R. Lashkaripour ◽  
H. Baghani

In the present paper, firstly, we review the notion of the SO-complete metric spaces. This notion let us to consider some fixed point theorems for single-valued mappings in incomplete metric spaces. Secondly, as motivated by the recent work of H. Baghani et al.(A fixed point theorem for a new class of set-valued mappings in R-complete (not necessarily complete) metric spaces, Filomat, 31 (2017), 3875-3884), we obtain the results of Ansari et al. [J. Fixed Point Theory Appl. (2017), 1145-1163] with very much weaker conditions. Also, we provide some examples show that our main theorem is a generalization of previous results. Finally, we give an application to the boundary value system for our results.


Sign in / Sign up

Export Citation Format

Share Document