variational inclusion problem
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 39)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Wanna Sriprad ◽  
Somnuk Srisawat

The purpose of this paper is to study the convergence analysis of an intermixed algorithm for finding the common element of the set of solutions of split monotone variational inclusion problem (SMIV) and the set of a finite family of variational inequality problems. Under the suitable assumption, a strong convergence theorem has been proved in the framework of a real Hilbert space. In addition, by using our result, we obtain some additional results involving split convex minimization problems (SCMPs) and split feasibility problems (SFPs). Also, we give some numerical examples for supporting our main theorem.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2250
Author(s):  
Thidaporn Seangwattana ◽  
Kamonrat Sombut ◽  
Areerat Arunchai ◽  
Kanokwan Sitthithakerngkiet

The goal of this study was to show how a modified variational inclusion problem can be solved based on Tseng’s method. In this study, we propose a modified Tseng’s method and increase the reliability of the proposed method. This method is to modify the relaxed inertial Tseng’s method by using certain conditions and the parallel technique. We also prove a weak convergence theorem under appropriate assumptions and some symmetry properties and then provide numerical experiments to demonstrate the convergence behavior of the proposed method. Moreover, the proposed method is used for image restoration technology, which takes a corrupt/noisy image and estimates the clean, original image. Finally, we show the signal-to-noise ratio (SNR) to guarantee image quality.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Raweerote Suparatulatorn ◽  
Watcharaporn Cholamjiak ◽  
Aviv Gibali ◽  
Thanasak Mouktonglang

AbstractIn this work we propose an accelerated algorithm that combines various techniques, such as inertial proximal algorithms, Tseng’s splitting algorithm, and more, for solving the common variational inclusion problem in real Hilbert spaces. We establish a strong convergence theorem of the algorithm under standard and suitable assumptions and illustrate the applicability and advantages of the new scheme for signal recovering problem arising in compressed sensing.


Author(s):  
Pattanapong Tianchai

AbstractIn this paper, we introduce a new iterative forward-backward splitting method with an error for solving the variational inclusion problem of the sum of two monotone operators in real Hilbert spaces. We suggest and analyze this method under some mild appropriate conditions imposed on the parameters such that another strong convergence theorem for these problem is obtained. We also apply our main result to improve the fast iterative shrinkage thresholding algorithm (IFISTA) with an error for solving the image deblurring problem. Finally, we provide numerical experiments to illustrate the convergence behavior and show the effectiveness of the sequence constructed by the inertial technique to the fast processing with high performance and the fast convergence with good performance of IFISTA.


Author(s):  
M. Akram ◽  
A.F. Aljohani ◽  
M. Dilshad ◽  
Aysha Khan

In this paper, we pose a new iterative algorithm and show that this newly constructed algorithm converges faster than some existing iterative algorithms. We validate our claim by an illustrative example. Also, we discuss the convergence of our algorithm to approximate the solution of a general variational inclusion problem. Also, we present a numerical example to verify our existence and convergence result. Finally, we apply our proposed iterative algorithm to solve a delay differential equation as an application


2021 ◽  
Author(s):  
Pattanapong Tianchai

Abstract In this paper, we introduce a new iterative forward-backward splitting method with an error for solving the variational inclusion problem of the sum of two monotone operators in real Hilbert spaces. We suggest and analyze this method under some mild appropriate conditions imposed on the parameters such that another strong convergence theorem for these problem is obtained. We also apply our main result to improved the fast iterative shrinkage thresholding algorithm (IFISTA) with an error for solving the image deblurring problem. Finally, we provide numerical experiments to illustrate the convergence behavior and show the effectiveness of the sequence constructed by the inertial technique to the fast processing with high performance and the fast convergence with good performance of IFISTA.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Pattanapong Tianchai

AbstractIn this paper, we introduce a regularization method for solving the variational inclusion problem of the sum of two monotone operators in real Hilbert spaces. We suggest and analyze this method under some mild appropriate conditions imposed on the parameters, which allow us to obtain a short proof of another strong convergence theorem for this problem. We also apply our main result to the fixed point problem of the nonexpansive variational inequality problem, the common fixed point problem of nonexpansive strict pseudocontractions, the convex minimization problem, and the split feasibility problem. Finally, we provide numerical experiments to illustrate the convergence behavior and to show the effectiveness of the sequences constructed by the inertial technique.


2021 ◽  
Vol 37 (3) ◽  
pp. 361-380
Author(s):  
JAMILU ABUBAKAR ◽  
◽  
POOM KUMAM ◽  
ABOR ISA GARBA ◽  
MUHAMMAD SIRAJO ABDULLAHI ◽  
...  

Variational inclusion is an important general problem consisting of many useful problems like variational inequality, minimization problem and nonlinear monotone equations. In this article, a new scheme for solving variational inclusion problem is proposed and the scheme uses inertial and relaxation techniques. Moreover, the scheme is self adaptive, that is, the stepsize does not depend on the factorial constants of the underlying operator, instead it can be computed using a simple updating rule. Weak convergence analysis of the iterates generated by the new scheme is presented under mild conditions. In addition, schemes for solving variational inequality problem and split feasibility problem are derived from the proposed scheme and applied in solving Nash-Cournot equilibrium problem and image restoration. Experiments to illustrate the implementation and potential applicability of the proposed schemes in comparison with some existing schemes in the literature are presented.


Sign in / Sign up

Export Citation Format

Share Document