scholarly journals Extraction new results of common fixed point theorems for $({T}, {\alpha }_{{s}}, {F})$-contraction of six mappings in a tripled b-metric space with an application of integral equations

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ghorban Khalilzadeh Ranjbar ◽  
Mohammad Esmael Samei

Abstract The aim of this work is to usher in tripled b-metric spaces, triple weakly $\alpha _{s}$ α s -admissible, triangular partially triple weakly $\alpha _{s}$ α s -admissible and their properties for the first time. Also, we prove some theorems about coincidence and common fixed point for six self-mappings. On the other hand, we present a new model, talk over an application of our results to establish the existence of common solution of the system of Volterra-type integral equations in a triple b-metric space. Also, we give some example to illustrate our theorems in the section of main results. Finally, we show an application of primary results.

2018 ◽  
Vol 23 (5) ◽  
pp. 664-690 ◽  
Author(s):  
Muhammad Nazam ◽  
Muhammad Arshad ◽  
Mihai Postolache

In this paper, we manifest some coincidence and common fixed point theorems for four self-mappings satisfying Círíc-type and Hardy–Rogers-type (αs,F)-contractions defined on an αs-complete b-metric space. We apply these results to infer several new and old corresponding results in ordered b-metric spaces and graphic b-metric spaces. Our work generalizes several recent results existing in the literature. We present examples to validate our results. We discuss an application of main result to show the existence of common solution of the system of Volterra type integral equations.


2016 ◽  
Vol 14 (1) ◽  
pp. 128-145 ◽  
Author(s):  
Oratai Yamaod ◽  
Wutiphol Sintunavarat ◽  
Yeol Je Cho

AbstractIn this paper we introduce a property and use this property to prove some common fixed point theorems in b-metric space. We also give some fixed point results on b-metric spaces endowed with an arbitrary binary relation which can be regarded as consequences of our main results. As applications, we applying our result to prove the existence of a common solution for the following system of integral equations: $$\matrix {x (t) = \int \limits_a^b {{K_1}} (t, r, x(r))dr, & & x(t) = \int \limits_a^b {{K_2}}(t, r, x(r))dr,} $$where a, b ∈ ℝ with a < b, x ∈ C[a, b] (the set of continuous real functions defined on [a, b] ⊆ ℝ) and K1, K2 : [a, b] × [a, b] × ℝ → ℝ are given mappings. Finally, an example is also given in order to illustrate the effectiveness of such result.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Arul Joseph Gnanaprakasam ◽  
Salah Mahmoud Boulaaras ◽  
Gunaseelan Mani ◽  
Mohamed Abdalla ◽  
Asma Alharbi

In this paper, we prove some common fixed point theorems for rational contraction mapping on complex partial b -metric space. The presented results generalize and expand some of the literature’s well-known results. We also explore some of the applications of our key results.


2018 ◽  
Vol 34 (3) ◽  
pp. 417-424
Author(s):  
PHUMIN SUMALAI ◽  
◽  
POOM KUMAM ◽  
DHANANJAY GOPAL ◽  
◽  
...  

Inspired by the work of Dakjum et al. [Eshi, D., Das, P. K. and Debnath, P., Coupled coincidence and coupled common fixed point theorems on a metric space with a graph, Fixed Point Theory Appl., 37 (2016), 1–14], we introduce a new class of G − f−contraction mappings in complete fuzzy metric spaces endowed with a directed graph and prove some existence results for coupled coincidence and coupled common fixed point theorems of this type of contraction mappings in complete fuzzy metric spaces endowed with a directed graph.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sahar Mohammad Abusalim ◽  
Mohd Salmi Md Noorani

The concept of a cone b-metric space has been introduced recently as a generalization of a b-metric space and a cone metric space in 2011. The aim of this paper is to establish some fixed point and common fixed point theorems on ordered cone b-metric spaces. The proposed theorems expand and generalize several well-known comparable results in the literature to ordered cone b-metric spaces. Some supporting examples are given.


2022 ◽  
Vol 11 (1) ◽  
pp. 25-34
Author(s):  
V.D. Borgaonkar ◽  
K.L. Bondar ◽  
S.M. Jogdand

In this paper we have used the concept of bi-metric space and intoduced the concept of bi-b-metric space. our objective is to obtain the common fixed point theorems for two mappings on two different b-metric spaces induced on same set X. In this paper we prove that on the set X two b-metrics are defined to form two different b-metric spaces and the two mappings defined on X have unique common fixed point.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 74 ◽  
Author(s):  
Haitham Qawaqneh ◽  
Mohd Noorani ◽  
Wasfi Shatanawi ◽  
Habes Alsamir

The aim of this paper is to establish the existence of some common fixed point results for generalized Geraghty ( α , ψ , ϕ ) -quasi contraction self-mapping in partially ordered metric-like spaces. We display an example and an application to show the superiority of our results. The obtained results progress some well-known fixed (common fixed) point results in the literature. Our main results cannot be specifically attained from the corresponding metric space versions. This paper is scientifically novel because we take Geraghty contraction self-mapping in partially ordered metric-like spaces via α − admissible mapping. This opens the door to other possible fixed (common fixed) point results for non-self-mapping and in other generalizing metric spaces.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1212
Author(s):  
Mathuraiveeran Jeyaraman ◽  
Mookiah Suganthi ◽  
Wasfi Shatanawi

In the present work, we study many fixed point results in intuitionistic generalized fuzzy cone metric space. Precisely, we prove new common fixed point theorems for three self mappings that do not require any commutativity or continuity but a generalized contractive condition. Our results are generalizations for many results in the literature. Some examples are given to support these results.


2018 ◽  
Vol 13 (03) ◽  
pp. 2050066
Author(s):  
Anju Panwar ◽  
Anita

The (W.C.C) condition was developed by K.P.R. Rao et al. in 2013 which established common fixed point results in partial metric spaces. By using Hausdorff metric-like space, we obtain Suzuki type common fixed point theorems for hybrid pair of maps in metric-like spaces. We observe different conditions about maps to obtain a fixed point. In addition, as consequence of our main result, we study the existence of a common solution for a class of functional equations originating in dynamic programming.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ziaul Islam ◽  
Muhammad Sarwar ◽  
Doaa Filali ◽  
Fahd Jarad

In this article, common fixed-point theorems for self-mappings under different types of generalized contractions in the context of the cone b 2 -metric space over the Banach algebra are discussed. The existence results obtained strengthen the ones mentioned previously in the literature. An example and an application to the infinite system of integral equations are also presented to validate the main results.


Sign in / Sign up

Export Citation Format

Share Document