scholarly journals A method with inertial extrapolation step for convex constrained monotone equations

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Abdulkarim Hassan Ibrahim ◽  
Poom Kumam ◽  
Auwal Bala Abubakar ◽  
Jamilu Abubakar

AbstractIn recent times, various algorithms have been incorporated with the inertial extrapolation step to speed up the convergence of the sequence generated by these algorithms. As far as we know, very few results exist regarding algorithms of the inertial derivative-free projection method for solving convex constrained monotone nonlinear equations. In this article, the convergence analysis of a derivative-free iterative algorithm (Liu and Feng in Numer. Algorithms 82(1):245–262, 2019) with an inertial extrapolation step for solving large scale convex constrained monotone nonlinear equations is studied. The proposed method generates a sufficient descent direction at each iteration. Under some mild assumptions, the global convergence of the sequence generated by the proposed method is established. Furthermore, some experimental results are presented to support the theoretical analysis of the proposed method.

Author(s):  
Mompati Koorapetse ◽  
P Kaelo ◽  
S Kooepile-Reikeletseng

In this paper, a new modified Perry-type derivative-free projection method for solving large-scale nonlinear monotone equations is presented. The method is developed by combining a modified Perry's conjugate gradient method with the hyperplane projection technique. Global convergence and numerical results of the proposed method are established. Preliminary numerical results show that the proposed method is promising and efficient compared to some existing methods in the literature.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 168 ◽  
Author(s):  
Zhifeng Dai ◽  
Huan Zhu

The goal of this paper is to extend the modified Hestenes-Stiefel method to solve large-scale nonlinear monotone equations. The method is presented by combining the hyperplane projection method (Solodov, M.V.; Svaiter, B.F. A globally convergent inexact Newton method for systems of monotone equations, in: M. Fukushima, L. Qi (Eds.)Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers. 1998, 355-369) and the modified Hestenes-Stiefel method in Dai and Wen (Dai, Z.; Wen, F. Global convergence of a modified Hestenes-Stiefel nonlinear conjugate gradient method with Armijo line search. Numer Algor. 2012, 59, 79-93). In addition, we propose a new line search for the derivative-free method. Global convergence of the proposed method is established if the system of nonlinear equations are Lipschitz continuous and monotone. Preliminary numerical results are given to test the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
San-Yang Liu ◽  
Yuan-Yuan Huang ◽  
Hong-Wei Jiao

Two unified frameworks of some sufficient descent conjugate gradient methods are considered. Combined with the hyperplane projection method of Solodov and Svaiter, they are extended to solve convex constrained nonlinear monotone equations. Their global convergence is proven under some mild conditions. Numerical results illustrate that these methods are efficient and can be applied to solve large-scale nonsmooth equations.


Author(s):  
Mohammed Yusuf Waziri ◽  
Jamilu Sabi’u

We suggest a conjugate gradient (CG) method for solving symmetric systems of nonlinear equations without computing Jacobian and gradient via the special structure of the underlying function. This derivative-free feature of the proposed method gives it advantage to solve relatively large-scale problems (500,000 variables) with lower storage requirement compared to some existing methods. Under appropriate conditions, the global convergence of our method is reported. Numerical results on some benchmark test problems show that the proposed method is practically effective.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Jamilu Sabi’u ◽  
Kanikar Muangchoo ◽  
Abdullah Shah ◽  
Auwal Bala Abubakar ◽  
Lateef Olakunle Jolaoso

Inspired by the large number of applications for symmetric nonlinear equations, this article will suggest two optimal choices for the modified Polak–Ribiére–Polyak (PRP) conjugate gradient (CG) method by minimizing the measure function of the search direction matrix and combining the proposed direction with the default Newton direction. In addition, the corresponding PRP parameters are incorporated with the Li and Fukushima approximate gradient to propose two robust CG-type algorithms for finding solutions for large-scale systems of symmetric nonlinear equations. We have also demonstrated the global convergence of the suggested algorithms using some classical assumptions. Finally, we demonstrated the numerical advantages of the proposed algorithms compared to some of the existing methods for nonlinear symmetric equations.


2019 ◽  
Vol 24 (4) ◽  
pp. 550-563
Author(s):  
Mompati Koorapetse ◽  
Professor Kaelo

A new three-term conjugate gradient-based projection method is presented in this paper for solving large-scale nonlinear monotone equations. This method is derivative-free and it is suitable for solving large-scale nonlinear monotone equations due to its lower storage requirements. The method satisfies the sufficient descent condition FTkdk ≤ −τ‖Fk‖2, where τ > 0 is a constant, and its global convergence is also established. Numerical results show that the method is efficient and promising.


Author(s):  
Jamilu Sabi'u ◽  
Abdullah Shah

In this article, we proposed two Conjugate Gradient (CG) parameters using the modified Dai-{L}iao condition and the descent three-term CG search direction. Both parameters are incorporated with the projection technique for solving large-scale monotone nonlinear equations. Using the Lipschitz and monotone assumptions, the global convergence of methods has been proved. Finally, numerical results are provided to illustrate the robustness of the proposed methods.


2019 ◽  
Vol 2 (3) ◽  
pp. 1-4
Author(s):  
Abubakar Sani Halilu ◽  
M K Dauda ◽  
M Y Waziri ◽  
M Mamat

An algorithm for solving large-scale systems of nonlinear equations based on the transformation of the Newton method with the line search into a derivative-free descent method is introduced. Main idea used in the algorithm construction is to approximate the Jacobian by an appropriate diagonal matrix. Furthermore, the step length is calculated using inexact line search procedure. Under appropriate conditions, the proposed method is proved to be globally convergent under mild conditions. The numerical results presented show the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document