systems of nonlinear equations
Recently Published Documents


TOTAL DOCUMENTS

483
(FIVE YEARS 83)

H-INDEX

35
(FIVE YEARS 5)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abubakar Sani Halilu ◽  
Arunava Majumder ◽  
Mohammed Yusuf Waziri ◽  
Kabiru Ahmed ◽  
Aliyu Muhammed Awwal

PurposeThe purpose of this research is to propose a new choice of nonnegative parameter t in Dai–Liao conjugate gradient method.Design/methodology/approachConjugate gradient algorithms are used to solve both constrained monotone and general systems of nonlinear equations. This is made possible by combining the conjugate gradient method with the Newton method approach via acceleration parameter in order to present a derivative-free method.FindingsA conjugate gradient method is presented by proposing a new Dai–Liao nonnegative parameter. Furthermore the proposed method is successfully applied to handle the application in motion control of the two joint planar robotic manipulators.Originality/valueThe proposed algorithm is a new approach that will not either submitted or publish somewhere.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2324
Author(s):  
Marek Berezowski ◽  
Marcin Lawnik

Physical processes occurring in devices with distributed variables and a turbulent tide with a dispersion of mass and heat are often modeled using systems of nonlinear equations. Solving such a system is sometimes impossible in an analytical manner. The iterative methods, such as Newton’s method, are not always sufficiently effective in such cases. In this article, a combination of the homotopy method and the parametric continuation method was proposed to solve the system of nonlinear differential equations. These methods are symmetrical, i.e., the calculations can be made by increasing or decreasing the value of the parameters. Thanks to this approach, the determination of all roots of the system does not require any iterative method. Moreover, when the solutions of the system are close to each other, the proposed method easily determines all of them. As an example of the method use a mathematical model of a non-adiabatic catalytic pseudohomogeneous tubular chemical reactor with longitudinal dispersion was chosen.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3073
Author(s):  
Beny Neta

Traub’s method was extended here to systems of nonlinear equations and compared to Steffensen’s method. Even though Traub’s method is only of order 1.839 and not quadratic, it performed better in the 10 examples.


2021 ◽  
Vol 5 (4) ◽  
pp. 204
Author(s):  
Asifa Tassaddiq ◽  
Sania Qureshi ◽  
Amanullah Soomro ◽  
Evren Hincal ◽  
Dumitru Baleanu ◽  
...  

There is an increasing demand for numerical methods to obtain accurate approximate solutions for nonlinear models based upon polynomials and transcendental equations under both single and multivariate variables. Keeping in mind the high demand within the scientific literature, we attempt to devise a new nonlinear three-step method with tenth-order convergence while using six functional evaluations (three functions and three first-order derivatives) per iteration. The method has an efficiency index of about 1.4678, which is higher than most optimal methods. Convergence analysis for single and systems of nonlinear equations is also carried out. The same is verified with the approximated computational order of convergence in the absence of an exact solution. To observe the global fractal behavior of the proposed method, different types of complex functions are considered under basins of attraction. When compared with various well-known methods, it is observed that the proposed method achieves prespecified tolerance in the minimum number of iterations while assuming different initial guesses. Nonlinear models include those employed in science and engineering, including chemical, electrical, biochemical, geometrical, and meteorological models.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2685
Author(s):  
Valeriy Naumov ◽  
Konstantin Samouylov

The article deals with queueing systems with random resource requirements modeled as bivariate Markov jump processes. One of the process components describes the service system with limited resources. Another component represents a random environment that submits multi-class requests for resources to the service system. If the resource request is lost, then the state of the service system does not change. The change in the state of the environment interacting with the service system depends on whether the resource request has been lost. Thus, unlike in known models, the service system provides feedback to the environment in response to resource requests. By analyzing the properties of the system of integral equations for the stationary distribution of the corresponding random process, we obtain the conditions for the stationary distribution to have a product form. These conditions are expressed in the form of three systems of nonlinear equations. Several special cases are explained in detail.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tahereh Eftekhari ◽  
Jalil Rashidinia ◽  
Khosrow Maleknejad

AbstractThe purpose of this paper is to provide sufficient conditions for the local and global existence of solutions for the general nonlinear distributed-order fractional differential equations in the time domain. Also, we provide sufficient conditions for the uniqueness of the solutions. Furthermore, we use operational matrices for the fractional integral operator of the second kind Chebyshev wavelets and shifted fractional-order Jacobi polynomials via Gauss–Legendre quadrature formula and collocation methods to reduce the proposed equations into systems of nonlinear equations. Also, error bounds and convergence of the presented methods are investigated. In addition, the presented methods are implemented for two test problems and some famous distributed-order models, such as the model that describes the motion of the oscillator, the distributed-order fractional relaxation equation, and the Bagley–Torvik equation, to demonstrate the desired efficiency and accuracy of the proposed approaches. Comparisons between the methods proposed in this paper and the existing methods are given, which show that our numerical schemes exhibit better performances than the existing ones.


Author(s):  
Hassan Mohammad ◽  
Aliyu Muhammed Awwal ◽  
Auwal Bala Abubakar ◽  
Ahmad Salihu Ben Musa

A derivative-free quasi-Newton-type algorithm in which its search direction is a product of a positive definite diagonal matrix and a residual vector is presented. The algorithm is simple to implement and has the ability to solve large-scale nonlinear systems of equations with separable functions. The diagonal matrix is simply obtained in a quasi-Newton manner at each iteration. Under some suitable conditions, the global and R-linear convergence result of the algorithm are presented. Numerical test on some benchmark separable nonlinear equations problems reveal the robustness and efficiency of the algorithm.


Author(s):  
Bettina Ponleitner ◽  
Hermann Schichl

AbstractThis paper presents a new algorithm based on interval methods for rigorously constructing inner estimates of feasible parameter regions together with enclosures of the solution set for parameter-dependent systems of nonlinear equations in low (parameter) dimensions. The proposed method allows to explicitly construct feasible parameter sets around a regular parameter value, and to rigorously enclose a particular solution curve (resp. manifold) by a union of inclusion regions, simultaneously. The method is based on the calculation of inclusion and exclusion regions for zeros of square nonlinear systems of equations. Starting from an approximate solution at a fixed set p of parameters, the new method provides an algorithmic concept on how to construct a box $${\mathbf {s}}$$ s around p such that for each element $$s\in {\mathbf {s}}$$ s ∈ s in the box the existence of a solution can be proved within certain error bounds.


Author(s):  
Janak Raj Sharma ◽  
Sunil Kumar ◽  
Ioannis K. Argyros

In this paper, a class of efficient iterative methods with increasing order of convergence for solving systems of nonlinear equations is developed and analyzed. The methodology uses well-known third-order Potra–Pták iteration in the first step and Newton-like iterations in the subsequent steps. Novelty of the methods is the increase in convergence order by an amount three per step at the cost of only one additional function evaluation. In addition, the algorithm uses a single inverse operator in each iteration, which makes it computationally more efficient and attractive. Local convergence is studied in the more general setting of a Banach space under suitable assumptions. Theoretical results of convergence and computational efficiency are verified through numerical experimentation. Comparison of numerical results indicates that the developed algorithms outperform the other similar algorithms available in the literature, particularly when applied to solve the large systems of equations. The basins of attraction of some of the existing methods along with the proposed method are given to exhibit their performance.


Sign in / Sign up

Export Citation Format

Share Document