scholarly journals Hopf bifurcation in a delayed reaction–diffusion–advection equation with ideal free dispersal

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yunfeng Liu ◽  
Yuanxian Hui

AbstractIn this paper, we investigate a delay reaction–diffusion–advection model with ideal free dispersal. The stability of positive steady-state solutions and the existence of the associated Hopf bifurcation are obtained by analyzing the principal eigenvalue of an elliptic operator. By the normal form theory and the center manifold reduction, the stability and bifurcation direction of Hopf bifurcating periodic solutions are obtained. Moreover, numerical simulations and a brief discussion are presented to illustrate our theoretical results.

2019 ◽  
Vol 29 (11) ◽  
pp. 1950144 ◽  
Author(s):  
Zuolin Shen ◽  
Junjie Wei

In this paper, we consider the dynamics of a delayed reaction–diffusion mussel-algae system subject to Neumann boundary conditions. When the delay is zero, we show the existence of positive solutions and the global stability of the boundary equilibrium. When the delay is not zero, we obtain the stability of the positive constant steady state and the existence of Hopf bifurcation by analyzing the distribution of characteristic values. By using the theory of normal form and center manifold reduction for partial functional differential equations, we derive an algorithm that determines the direction of Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, some numerical simulations are carried out to support our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Shaoli Wang ◽  
Zhihao Ge

The Hopf bifurcation for a predator-prey system with -logistic growth and prey refuge is studied. It is shown that the ODEs undergo a Hopf bifurcation at the positive equilibrium when the prey refuge rate or the index- passed through some critical values. Time delay could be considered as a bifurcation parameter for DDEs, and using the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction of bifurcations and the stability and other properties of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Massimiliano Ferrara ◽  
Luca Guerrini ◽  
Giovanni Molica Bisci

Matsumoto and Szidarovszky (2011) examined a delayed continuous-time growth model with a special mound-shaped production function and showed a Hopf bifurcation that occurs when time delay passes through a critical value. In this paper, by applying the center manifold theorem and the normal form theory, we obtain formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Moreover, Lindstedt’s perturbation method is used to calculate the bifurcated periodic solution, the direction of the bifurcation, and the stability of the periodic motion resulting from the bifurcation.


2013 ◽  
Vol 23 (12) ◽  
pp. 1350194
Author(s):  
GAO-XIANG YANG ◽  
JIAN XU

In this paper, a three-species predator–prey system with diffusion and two delays is investigated. By taking the sum of two delays as a bifurcation parameter, it is found that the spatially homogeneous Hopf bifurcation can occur as the sum of two delays crosses a critical value. The direction of Hopf bifurcation and the stability of the bifurcating periodic solution are obtained by employing the center manifold theorem and the normal form theory. In addition, some numerical simulations are also given to illustrate the theoretical analysis.


2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
Yanuo Zhu ◽  
Yongli Cai ◽  
Shuling Yan ◽  
Weiming Wang

This work deals with the analysis of a delayed diffusive predator-prey system under Neumann boundary conditions. The dynamics are investigated in terms of the stability of the nonnegative equilibria and the existence of Hopf bifurcation by analyzing the characteristic equations. The direction of Hopf bifurcation and the stability of bifurcating periodic solution are also discussed by employing the normal form theory and the center manifold reduction. Furthermore, we prove that the positive equilibrium is asymptotically stable when the delay is less than a certain critical value and unstable when the delay is greater than the critical value.


2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
Xinhong Pan ◽  
Min Zhao ◽  
Chuanjun Dai ◽  
Yapei Wang

A predator-prey model with modified Holling-Tanner functional response and time delays is considered. By regarding the delays as bifurcation parameters, the local and global asymptotic stability of the positive equilibrium are investigated. The system has been found to undergo a Hopf bifurcation at the positive equilibrium when the delays cross through a sequence of critical values. In addition, the direction of the Hopf bifurcation and the stability of bifurcated periodic solutions are also studied, and an explicit algorithm is obtained by applying normal form theory and the center manifold theorem. The main results are illustrated by numerical simulations.


2004 ◽  
Vol 14 (11) ◽  
pp. 3909-3919 ◽  
Author(s):  
YONGLI SONG ◽  
JUNJIE WEI ◽  
MAOAN HAN

In this paper, we consider the following nonlinear differential equation [Formula: see text] We first consider the existence of local Hopf bifurcations, and then derive the explicit formulas which determine the stability, direction and other properties of bifurcating periodic solutions, using the normal form theory and center manifold reduction. Further, particular attention is focused on the existence of the global Hopf bifurcation. By using the global Hopf bifurcation theory due to Wu [1998], we show that the local Hopf bifurcation of (1) implies the global Hopf bifurcation after the second critical value of the delay τ. Finally, numerical simulation results are given to support the theoretical predictions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.


2006 ◽  
Vol 2006 ◽  
pp. 1-29 ◽  
Author(s):  
Xiang-Ping Yan ◽  
Wan-Tong Li

We first study the distribution of the zeros of a fourth-degree exponential polynomial. Then we apply the obtained results to a simplified bidirectional associated memory (BAM) neural network with four neurons and multiple time delays. By taking the sum of the delays as the bifurcation parameter, it is shown that under certain assumptions the steady state is absolutely stable. Under another set of conditions, there are some critical values of the delay, when the delay crosses these critical values, the Hopf bifurcation occurs. Furthermore, some explicit formulae determining the stability and the direction of periodic solutions bifurcating from Hopf bifurcations are obtained by applying the normal form theory and center manifold reduction. Numerical simulations supporting the theoretical analysis are also included.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiang Li ◽  
Ranchao Wu

A new 4D hyperchaotic system is constructed based on the Lorenz system. The compound structure and forming mechanism of the new hyperchaotic attractor are studied via a controlled system with constant controllers. Furthermore, it is found that the Hopf bifurcation occurs in this hyperchaotic system when the bifurcation parameter exceeds a critical value. The direction of the Hopf bifurcation as well as the stability of bifurcating periodic solutions is presented in detail by virtue of the normal form theory. Numerical simulations are given to illustrate and verify the results.


Sign in / Sign up

Export Citation Format

Share Document