scholarly journals The existence and uniqueness of the solution for nonlinear Fredholm and Volterra integral equations together with nonlinear fractional differential equations via w-distances

2017 ◽  
Vol 2017 (1) ◽  
Author(s):  
Teerawat Wongyat ◽  
Wutiphol Sintunavarat
Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1093
Author(s):  
Daniel Cao Labora

One major question in Fractional Calculus is to better understand the role of the initial values in fractional differential equations. In this sense, there is no consensus about what is the reasonable fractional abstraction of the idea of “initial value problem”. This work provides an answer to this question. The techniques that are used involve known results concerning Volterra integral equations, and the spaces of summable fractional differentiability introduced by Samko et al. In a few words, we study the natural consequences in fractional differential equations of the already existing results involving existence and uniqueness for their integral analogues, in terms of the Riemann–Liouville fractional integral. In particular, we show that a fractional differential equation of a certain order with Riemann–Liouville derivatives demands, in principle, less initial values than the ceiling of the order to have a uniquely determined solution, in contrast to a widely extended opinion. We compute explicitly the amount of necessary initial values and the orders of differentiability where these conditions need to be imposed.


Sign in / Sign up

Export Citation Format

Share Document