Targeted gene suppression through double-stranded RNA application using easy-to-use methods in Arabidopsis thaliana
AbstractRNA interference (RNAi) is an RNA-dependent gene silencing process that is regulated by the interaction between the RNA-induced silencing complex (RISC) and double-stranded RNA (dsRNA). Exogenous dsRNAs are imported directly into the cytoplasm, where they are cleaved by Dicer into short dsRNA fragments of 20–25 base pairs. These short dsRNA fragments, called small interfering RNAs (siRNAs) have sequence-specific interaction with target genes. The guide strand, onto which siRNAs are incorporated in the RISC interacts with the target mRNA sequence, thereby inducing cleavage and degradation of target messenger RNAs (mRNAs) by ribonucleases. Recent studies have shown that plant dsRNA treatments can induce RNAi. However, the dsRNA application methods and delivery systems involved have not been well examined. In this study, dsRNA was introduced to Arabidopsis thaliana by two methods: dipping and spray. We synthesized two dsRNAs designed to target mRNAs encoding enhanced green fluorescent protein (EGFP). After applying dsRNAs that target EGFP, we found an obvious reduction in GFP expression. This was determined using fluorescence microscopy and quantitative reverse transcription PCR to assess the mRNA levels of the auxin-sensitive reporter DR5-EGFP Arabidopsis thaliana. Our data revealed that applying target gene-specific exogenous dsRNAs can induce suppression of target genes of interest whether the dipping or spray method is used. This study therefore provides a foundation for understanding how to apply and deliver dsRNAs in plants.