scholarly journals A hybrid metaheuristic for solving asymmetric distance-constrained vehicle routing problem

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ha-Bang Ban ◽  
Phuong Khanh Nguyen

AbstractThe Asymmetric Distance-Constrained Vehicle Routing Problem (ADVRP) is NP-hard as it is a natural extension of the NP-hard Vehicle Routing Problem. In ADVRP problem, each customer is visited exactly once by a vehicle; every tour starts and ends at a depot; and the traveled distance by each vehicle is not allowed to exceed a predetermined limit. We propose a hybrid metaheuristic algorithm combining the Randomized Variable Neighborhood Search (RVNS) and the Tabu Search (TS) to solve the problem. The combination of multiple neighborhoods and tabu mechanism is used for their capacity to escape local optima while exploring the solution space. Furthermore, the intensification and diversification phases are also included to deliver optimized and diversified solutions. Extensive numerical experiments and comparisons with all the state-of-the-art algorithms show that the proposed method is highly competitive in terms of solution quality and computation time, providing new best solutions for a number of instances.

2020 ◽  
Author(s):  
Bang Ha Ban ◽  
Phuong Khanh Nguyen

Abstract The Asymmetric Distance-Constrained Vehicle Routing Problem (ADVRP) is an NP-hard problems. In ADVRP problem, each customer is visited once by one vehicle; every tour starts and ends at a depot; and the travelled distance by each vehicle is required to be less than or equal to the given maximum value. The problem is a natural extension of Vehicle Routing Problem case. In our work, we propose a hybrid metaheuristic algorithm combining the Randomized Variable Neighborhood Search (RVNS) and the Tabu Search (TS) to solve the problem. The combination of multiple neighborhoods and tabu mechanism is used for their capacity to escape local optima while exploring the solution space. Furthermore, the intensification and diversification phases are also included to deliver optimized and diversified solutions for the search. Extensive numerical experiments on benchmark instances show that our algorithm can be comparable with the state-of-the-art previous algorithms in terms of solution quality and computation time. In many cases our proposed method is able to improve the best-known solution available from the literature.


2020 ◽  
Author(s):  
Bang Ha Ban ◽  
Phuong Khanh Nguyen

Abstract The Asymmetric Distance-Constrained Vehicle Routing Problem (ADVRP) is an NP-hard problems. In ADVRP problem, each customer is visited once by one vehicle; every tour starts and ends at a depot; and the travelled distance by each vehicle is required to be less than or equal to the given maximum value. The problem is a natural extension of Vehicle Routing Problem case. In our work, we propose a hybrid metaheuristic algorithm combining the Randomized Variable Neighborhood Search (RVNS) and the Tabu Search (TS) to solve the problem. The combination of multiple neighborhoods and tabu mechanism is used for their capacity to escape local optima while exploring the solution space. Furthermore, the intensification and diversification phases are also included to deliver optimized and diversified solutions for the search. Extensive numerical experiments on benchmark instances show that our algorithm can be comparable with the state-of-the-art previous algorithms in terms of solution quality and computation time. In many cases our proposed method is able to improve the best-known solution available from the literature.


2017 ◽  
Author(s):  
Παντελής Λάππας

Στόχος της παρούσας διατριβής είναι η παρουσίαση αλγοριθμικών προσεγγίσεων για την επίλυση του Προβλήματος Δρομολόγησης Αποθεμάτων (Inventory Routing Problem, IRP) και του Προβλήματος Δρομολόγησης Αποθεμάτων με Χρονικά Παράθυρα (Inventory Routing Problem with Time Windows, IRPTW). Τα ανωτέρω προβλήματα πηγάζουν από την προσέγγιση της Διαχείρισης Αποθεμάτων από τον Προμηθευτή/Πωλητή (Vendor Managed Inventory, VMI) που διαδόθηκε ιδιαίτερα κατά τα τέλη της δεκαετίας του ’80 από τις Wal-Mart και Procter & Gamble και στη συνέχεια υιοθετήθηκε από πολλές εταιρίες όπως οι Johnson & Johnson, Black & Decker κ.ά. Σύμφωνα με το VMI, ο προμηθευτής διανέμει προϊόντα σε έναν αριθμό από γεωγραφικά διάσπαρτους πελάτες αποφασίζοντας ταυτόχρονα για τα ακόλουθα: (1) τους χρόνους εξυπηρέτησης πελατών, (2) τις ποσότητες διανομής και (3) τις διαδρομές που πρέπει να ακολουθηθούν. Οι πρώτες δύο αποφάσεις, σχετίζονται με το Πρόβλημα Ελέγχου Αποθεμάτων (Inventory Control Problem, ICP), ενώ η τρίτη με το Πρόβλημα της Δρομολόγησης Οχημάτων (Vehicle Routing Problem, VRP). Αξίζει να σημειωθεί πως το IRPTW αποτελεί βασική επέκταση του IRP, καθώς ισχύουν οι ίδιοι περιορισμοί, αλλά για κάθε πελάτη η εξυπηρέτηση πρέπει να ξεκινήσει και να ολοκληρωθεί μέσα σε ένα χρονικό παράθυρο (time window), ενώ το όχημα θα παραμένει στο χώρο του πελάτη για συγκεκριμένο χρόνο εξυπηρέτησης. Κατά συνέπεια, το IRPTW αποτελεί σύνθεση του ICP και του Προβλήματος Δρομολόγησης Οχημάτων με Χρονικά Παράθυρα (Vehicle Routing Problem with Time Windows, VRPTW). Η διαφοροποίηση των προβλημάτων δρομολόγησης αποθεμάτων έναντι των υπολοίπων προβλημάτων δρομολόγησης (routing problems) οφείλεται στον παράγοντα απόθεμα, ο οποίος προσθέτει στο πρόβλημα τη διάσταση του χρόνου. Ως εκ τούτου, τα IRP και IRPTW αντιμετωπίζονται ως προβλήματα πολλαπλών περιόδων (multi-period problems). Ο παράγοντας απόθεμα περιπλέκει το πρόβλημα σε δύο διαστάσεις. Πρώτον, η περιορισμένη δυνατότητα διατήρησης αποθέματος στον προμηθευτή και/ ή στους πελάτες θα πρέπει να λαμβάνεται υπόψη όταν αποφασίζονται οι ποσότητες που θα διανεμηθούν, ενώ τυχόν κόστη που συνδέονται με τη διατήρηση αποθέματος στον προμηθευτή ή τους πελάτες πρέπει να συμπεριλαμβάνονται στην αντικειμενική συνάρτηση. Τα προβλήματα δρομολόγησης αποθεμάτων ανήκουν στην κλάση πολυπλοκότητας NP και χαρακτηρίζονται ως NP-δυσχερή (NP-Hard), καθώς περικλείουν το κλασικό πρόβλημα της δρομολόγησης οχημάτων. Με τη μαθηματική μοντελοποίηση των προβλημάτων παρουσιάζεται, επιπλέον, για κάθε πρόβλημα μία αντίστοιχη αλγοριθμική επίλυση. Στην περίπτωση του IRP, η αντικειμενική συνάρτηση του προβλήματος αναπαριστά το συνολικό κόστος που αποτελείται από το κόστος μεταφοράς (transportation cost) και το κόστος αποθήκευσης/διατήρησης αποθέματος (inventory holding cost) στους πελάτες. Για το IRPTW, η αντικειμενική συνάρτηση του προβλήματος αναπαριστά μόνο το συνολικό κόστος μεταφοράς. Λόγω της NP-hard φύσης του IRP προτείνεται ένας υβριδικός εξελικτικός αλγόριθμος βελτιστοποίησης (hybrid evolutionary optimization algorithm) που αξιοποιεί δύο ευρέως γνωστούς μεθευρετικούς αλγόριθμους (meta-heuristics): τον Γενετικό Αλγόριθμο (Genetic Algorithm, GA) και τoν Αλγόριθμο της Προσομοιωμένης Ανόπτησης (Simulated Annealing Algorithm, SA). Ο GA αξιοποιείται στη φάση του σχεδιασμού (planning) όπου καθορίζονται οι προγραμματισμένες προς αποστολή ποσότητες προϊόντος (delivery quantities), καθώς επίσης και οι χρονικές στιγμές του ορίζοντα όπου οι πελάτες θα λάβουν τις σχετικές ποσότητες (delivery times). Ο SA χρησιμοποιείται στη φάση της δρομολόγησης (routing) για την επίλυση των προβλημάτων δρομολόγησης που προκύπτουν σε κάθε περίοδο του χρονικού ορίζοντα. Τα αποτελέσματα των δύο αλγορίθμων συνδυάζονται επαναληπτικά έως την εύρεση της βέλτιστης λύσης του προβλήματος.Όσον αφορά το IRPTW, παρουσιάζεται ένας αλγόριθμος επίλυσης δύο φάσεων (two-phase solution algorithm) που βασίζεται σε μία απλή Προσομοίωση (simple simulation) για τη φάση του σχεδιασμού και στον Αλγόριθμο Μεταβλητής Γειτονιάς Αναζήτησης (Variable Neighborhood Search, VNS) για τη φάση της δρομολόγησης. Τέλος, για τη μέτρηση της αποτελεσματικότητας των δύο προτεινόμενων αλγοριθμικών προσεγγίσεων, νέα δεδομένα προβλημάτων (benchmark instances) έχουν σχεδιαστεί για τα IRP και IRPTW, ενώ παρουσιάζονται αναλυτικά υπολογιστικά αποτελέσματα επί των προβλημάτων.


2012 ◽  
Vol 6-7 ◽  
pp. 256-260
Author(s):  
Hai Hua Li ◽  
Zong Yan Xu ◽  
Fei Fei Zhou

Vehicle routing problem is a typical NP-hard problem and is difficult to get an optimum solution. Aiming at the shortages of the existing methods, this paper proposed an algorithm based on immune clonal selection to solve vehicle routing problem. In the algorithm, expressed antibody with matrix, generated the initial population of antibodies randomly, and employed the operations such as clonal selection, genetic mutation iteratively to search optimum solution in solution space. The experimental results show that the algorithm presented here can converge to the global optimum solution rapidly, overcoming such disadvantages of the genetic algorithm as slower convergent velocity and the convergence to a local optimum solution.


Sign in / Sign up

Export Citation Format

Share Document