scholarly journals Efficacy of natural oils against the biological activity on Callosobruchus maculatus and Callosobruchus chinensis (Coleoptera: Tenebrionidae)

Author(s):  
Magda Mahmoud Amin Sabbour

Abstract Background Callosobruchus maculatus and C. chinensis (Coleoptera: Tenebrionidae) are dangerous insects to stored grains. They are controlled by chemical insecticides, which cause a lot of harmful diseases and pollute the environment. Essential oils are a new trend for controlling of storage pests. Methods The nano-encapsulation process was carried out by polymerization technology. The tested nano-oils were experimented at tested concentration (0.5%) for their insecticidal activities against the third-instar larvae of tested insects. After 7 days of exposure, accumulative mortality percentages were calculated in the treated and untreated control. Also, the tested nano-oils were sprayed to the foam granules and were mixed with 2 g foam/100 g cow pea for testing the oviposition inhibitory effects of the tested oils. Additionally, the experiment was designed to test the latent effect of the tested oils against C. maculatus and C. chinensis on foam as surface protectant after 90-day intervals. Results After 7 days of treatments, the accumulations of C. maculatus were 61.2, 42.0, 46.6, and 35.5% after being treated with rosemary, catnip, garlic, and citronella oil, respectively, as compared to 0.3% in the control. When C. chinensis were treated with corresponding oils, the accumulations obtained 68.9, 44.1, 49.9, and 37.9% as compared to 0.1% in the control. When both the target insect pests, C. maculatus and C. chinensis, were treated with the tested nano-oils, results showed that the accumulations of C. maculatus recorded 82.2, 55.8, 66.3, and 46.3% when treated with nano-rosemary, nano-anis, nano-garlic, and nano-citronella as compared to 0.1 in the control. When the corresponding nano-oils were applied against C. chinensis, the accumulations obtained 89.7, 42.8, 70.9, and 48.9% as compared to 0.1% in the control. When the tested oils and their nano were tested against C. maculatus life cycle, the number of eggs laid/female were significantly decreased to 6.4 ± 9.89 eggs/female after nano-rosemary treatments as compared to 299.9 ± 9299 eggs/female in the control. The adult emergence decreased to 1% after nano-rosemary treatments as compared to 100% in the control. The malformations of the insect significantly increased after nano-rosemary and nano-anis to 100% as compared to 0% in the control. The same results obtained when C. chinensis were treated with different tested oils. The number of eggs C. chinensis laid/female was 8.3 ± 1.0 eggs/female as compared to 298.9 ± 7.89 eggs/female in the control. Conclusion This work research indicate that some essential oils might be useful for managing C. maculatus and C. chinensis in enclosed spaces because of their fumigant harmful action. Plant essential oils and their active ingredient have potentially high bioactivity against a range of the target insect pests. Furthermore, they are highly selective to C. maculatus and C. chinensis. Incorporation of essential oils into a controlled release nano-formulation prevents rapid vaporization and degradation, increases constancy, and preserves the lower effective dosage/application. Treated foam with nano-rosemary and nano-garlic oils and covering gunny bags provided many efficient effects against tested insects.

2021 ◽  
Vol 4 (2) ◽  
pp. 55-79
Author(s):  
Azawei A. ◽  
Okorodo P.C. ◽  
Blessing E.

Evaluation on the Effect of Sustainable Environmental Friendly Bio Pesticides Application on the Growth of Seed borne Fungi on Cowpea (Vigna unguiculata L. Walp.) was conducted at the Department of Crop and Soil Science Laboratory, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria. To determine the percentage (%) efficacy of plant essential oils and to evaluate the best plant essential oil on the suppression of the pathogen cultured and treated Potatoes Dextrose Agar (PDA) plates with the different plant essential oils concentration levels (0.1, 0.01, and 0.001%). This experiment was arranged in Complete Randomized Design (CRD) and each treatment was replicated three times and each replicate contained 12 petri dishes. The result shows that ginger oil at 0.1 in all the days of the bioassay assessment, particularly, from day 6-day10 proved more effective in suppressing the teste pathogen (A. niger), this could be the present of the active ingredient (Zingerone) on the treatment. Therefore, this result should be encouraged for Cowpea farmers as seed treatment before storage to prevent Cowpea weevils (Callosobruchus maculatus) as a grain storage insect pest, that causes serious destruction on the stored grains.


2018 ◽  
Vol 34 (3) ◽  
pp. 210-216 ◽  
Author(s):  
Edmund J. Norris ◽  
Maria Archevald-Cansobre ◽  
Aaron D. Gross ◽  
Lyric C. Bartholomay ◽  
Joel R. Coats

ABSTRACT Many synthetic insecticides cause immobilization in insect pests after they are exposed. This immobilization or knockdown is an important feature of intoxication that contributes to the abatement of pest insect populations, while preventing vectors of disease from biting and spreading pathogenic organisms to susceptible individuals. We have previously demonstrated that certain plant essential oils rapidly immobilize adult female mosquitoes that have been exposed via topical application. To further characterize this effect, adult female Aedes aegypti were exposed to multiple concentrations of 32 commercially available plant essential oils, and immobilization at 1 h after exposure was recorded. The dose required to produce the 1-h knockdown effect in 50% of the test population (KD50) was calculated and compared with concentrations of each plant essential oil that caused mortality at 24 h. In the current study, multiple plant essential oils caused high percentage knockdown at 1 h at lower concentrations than concentrations that caused mortality at 24 h. Moreover, delayed mortality was observed in mosquitoes that were exposed to various concentrations of the 2 plant essential oils that produced significant knockdown at 1 h. These observations demonstrate an important characteristic of many plant essential oils and represent a novel means for which these oils may be incorporated into future insecticidal formulations.


2017 ◽  
Vol 149 (5) ◽  
pp. 639-648 ◽  
Author(s):  
Jatinder S. Sangha ◽  
Tess Astatkie ◽  
G. Christopher Cutler

AbstractAlternatives to synthetic insecticides are desirable for management of diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), an insect pest of global importance. Many essential oils derived from aromatic plants have demonstrated toxicity and behaviour altering effects on insect pests, and are considered low-risk alternatives to synthetic insecticides. We conducted laboratory experiments to determine the biological activity of several low-cost, commercially available essential oils against P. xylostella. Experiments testing ovicidal effects, larvicidal effects, larval feeding deterrence, and adult oviposition deterrence were done with essential oils derived from Artemisia abrotanum Linnaeus (Asteraceae), balsam fir (Abies balsamea Linnaeus (Pinaceae)), black pepper (Piper nigrum Linnaeus (Piperaceae)), eucalyptus (Eucalyptus polybractea (Baker) (Myrtaceae)), garlic (Allium sativum Linnaeus (Amaryllidaceae)), rosewood (a blend of different oil constituents), tansy (Tanacetum vulgare Linnaeus (Asteraceae)), and thyme (Thymus zygis Linnaeus (Lamiaceae)), using concentrations of 1, 2.5, and 5% v/v. Although all essential oils had some level of bioactivity against certain P. xylostella life stages, essential oils from garlic, rosewood, and thyme were most effective overall, demonstrating significant ovicidal and larvicidal activity, as well as deterrent effects on larval feeding and settling behaviour, and adult oviposition. Although variable phytotoxicity was observed with essential oils at 2.5% and 5% v/v concentrations, the results suggest that rosewood, garlic, and thyme essential oils have potential in management of P. xylostella.


2015 ◽  
Vol 35 (04) ◽  
pp. 172-184 ◽  
Author(s):  
Prisila A. Mkenda ◽  
Philip C. Stevenson ◽  
Patrick Ndakidemi ◽  
Dudley I. Farman ◽  
Steven R. Belmain

Insecticidal activities of five pesticidal plant species,Tephrosia vogelii,Dysphania(Syn:Chenopodium)ambrosioides,Lippia javanica,Tithonia diversifoliaandVernonia amygdalina, which have been reported to control storage pests, were evaluated as leaf powders againstCallosobruchus maculatus(Fabricius 1775) in stored cowpea. Their efficacy was compared with the commercial pesticide Actellic dust (pirimiphos-methyl) at the recommended concentration (50 g/90 kg), and with untreated cowpea seeds as a negative control. The plant powders were applied at concentrations of 0.01, 0.1, 1 and 3 g/10 g of cowpea seeds in 250 ml plastic containers (to measure contact toxicity), or 0.005, 0.05, 0.5 and 5 g tied in small muslin cloth bags and hung in 500 ml plastic bottles containing 10 g of cowpea seeds (to measure fumigant toxicity). Mortality of adults, oviposition deterrence, adult emergence, and percent seed damage were recorded. Complete protection of seeds and inhibition of adult emergence were achieved in Actellic dust-treated seeds; contact toxicity using leaf powders ofT. vogeliiat all concentrations,D. ambrosioidesat concentrations of 0.1, 1 and 3 g andL. javanicaat concentrations of 1 and 3 g; and fumigant toxicity usingD.ambrosioidesat concentrations of 0.5 and 5 g andL.javanicaat a concentration of 5 g. Head space analysis ofD.ambrosioidesandL.javanicaidentified ascaridole and camphor, respectively, as components that could be responsible for the bioactivity of these plant species. These plants may, therefore, serve as effective but less harmful biopesticide alternatives to Actellic. Conversely,V.amygdalinaandT.diversifoliawere not effective, indicating that they should not be promoted for controlling bruchids in cowpea.


Sign in / Sign up

Export Citation Format

Share Document