The effects of oak (Quercus) restoration on forest trajectory and small mammal use in the southern Cumberland Plateau, USA
Abstract Background Thinning and prescribed fire are increasingly used to promote oak (Quercus L. spp.) regeneration in forest restoration projects across the eastern United States. In addition to monitoring the response of vegetation to these reductions in basal area, the research and land management community has become focused on the response of wildlife to these treatments. In a landscape in which forest ownership is fragmented and dominated by non-industrial private landowners, predicting the range of wildlife and vegetation response to treatments will be necessary to facilitate adoption of a landscape-scale approach to oak restoration. The goal of this study was to examine the efficacy of restoring privately owned, mixed forest stands that were partially planted in loblolly pine (Pinus taeda L.) and eastern white pine (Pinus strobus L.) to oak-dominated communities through the use of thinning and prescribed fire. Additionally, the study documented implications of these treatments on small mammal activity in the southern Cumberland Plateau. Results Following basal area reductions ranging from 30 to 60% and three prescribed fires across three sites, mean oak seedling densities rose from 10 200 ha−1 to 17 900 ha−1. Post-treatment oak seedling densities were related to pre-treatment densities (R2 = 0.55, P < 0.0001) and the number of oak trees >20 cm diameter within 10 m of plot center (R2 = 0.15, P = 0.01). Three years after the last prescribed fire, bat activity (mean passes per night) was significantly higher in the treated stands compared to adjacent undisturbed forest. We did not detect any significant differences in rodent activity between our treated stands and forest controls for two of the three years studied. Conclusions The results of this study highlighted the within-stand variation that drives post-harvest vegetation trajectories. Three years after the last prescribed fire, bats exhibited higher foraging activity in the treated sites that had lower basal area and very little midstory clutter. Our three-year summer monitoring of rodent activity following the last of the three prescribed fires revealed differences in rodent activity between our treated sites and adjacent forest controls only during 2018 (P = 0.001). These results will assist private landowners in the region as they consider the costs and benefits of oak forest restoration.