scholarly journals Tree Mortality Following Mixed-Severity Prescribed Fire Dramatically Alters the Structure of a Developing Pinus taeda Forest on the Mid-Atlantic Coastal Plain

Fire ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 25 ◽  
Author(s):  
David G. Ray ◽  
Deborah Landau

This case study documents the aftermath of a mixed-severity prescribed fire conducted during the growing season in a young loblolly pine forest. The specific management objective involved killing a substantial proportion of the overstory trees and creating an open-canopy habitat. The burn generated canopy openings across 26% of the 25-ha burn block, substantially altering the horizontal structure. Mortality of pines was high and stems throughout the size distribution were impacted; stem density was reduced by 60% and basal area and aboveground biomass (AGB) by ~30% at the end of the first growing season. A nonlinear regression model fit to plot data portrays a positive relationship between high stocking (i.e., relative density > 0.60) and postburn mortality. Survival of individual trees was reliably modeled with logistic regression, including variables describing the relative reduction in the size of tree crowns following the burn. Total AGB recovered rapidly, on average exceeding levels at the time of the burn by 23% after six growing seasons. Intentional mixed-severity burning effectively created persistent canopy openings in a young fire-tolerant precommercial-sized pine forest, meeting our objectives of structural alteration for habitat restoration.

2006 ◽  
Vol 30 (3) ◽  
pp. 147-153 ◽  
Author(s):  
Ralph L. Amateis ◽  
Stephen P. Prisley ◽  
Harold E. Burkhart ◽  
Jiping Liu

Abstract Analysis of loblolly pine plantation permanent plot data established across the southeastern United States indicates that differences in dominant height and stand basal area may be related to geographic locale as well as physiographic region. In general, holding other factors constant,plantations at southern latitudes and eastern longitudes have less basal area than plantations at northern latitudes and western longitudes. Plantations at southern latitudes and eastern longitudes in the Atlantic Coastal Plain are generally taller than elsewhere in the Atlantic Coastal Plain.These trends were consistent for a younger population of intensively managed plantations, as well as for an older population of nonintensively managed plantations. Regression equations were developed to test the significance of geographic location on the prediction of basal area and dominantheight. Even in the presence of stand variables that are highly correlated with basal area and dominant height, latitude and longitude were highly significant predictors. Including them as predictor variables increased considerably the precision of the regression equations. South. J. Appl.For. 30(3):142–146.


1999 ◽  
Vol 29 (7) ◽  
pp. 1073-1083 ◽  
Author(s):  
James H Miller ◽  
Robert S Boyd ◽  
M Boyd Edwards

This study tested for effects of site preparation herbicides applied at high labeled rates 11 years earlier on plant species richness, diversity, and stand structure and composition. Four study sites in three physiographic provinces were established in central Georgia in 1984. Six herbicide treatments were included on each site: hexazinone liquid, hexazinone pellets, glyphosate, triclopyr, picloram, and a mixture of dicamba and 2,4-dichlorophenoxyacetic acid (2,4-D). Herbicide and untreated plots were prescribed-burned and planted to loblolly pine (Pinus taeda L.). Eleven years after treatment, 177 total species were identified in these dense pine plantations; 99 species were forbs and grasses-grasslikes. Treated and check plots did not differ in species richness or diversity. Structurally, the total basal area of the tree canopy was not significantly altered, but the proportion of pine to hardwoods and shrub stem density were influenced by treatment. Latent effects were detected in the abundance and frequency of Pinus taeda, Prunus serotina Ehrh., Quercus stellata Wangenh., Diospyros virginiana L., Vaccinium stamineum L., Vitis rotundifolia Michx., and Lespedeza bicolor Turcz. Most are potential mast producers for wildlife. Herbicide site preparation had little influence on total species numbers or their diversity 11 years after treatment but affected composition by altering perennial species abundance.


Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
C. Ken Smith ◽  
Amy J. Turner ◽  
J. Kevin Hiers ◽  
Julie Garai ◽  
W. Nate Wilson ◽  
...  

Abstract Background Thinning and prescribed fire are increasingly used to promote oak (Quercus L. spp.) regeneration in forest restoration projects across the eastern United States. In addition to monitoring the response of vegetation to these reductions in basal area, the research and land management community has become focused on the response of wildlife to these treatments. In a landscape in which forest ownership is fragmented and dominated by non-industrial private landowners, predicting the range of wildlife and vegetation response to treatments will be necessary to facilitate adoption of a landscape-scale approach to oak restoration. The goal of this study was to examine the efficacy of restoring privately owned, mixed forest stands that were partially planted in loblolly pine (Pinus taeda L.) and eastern white pine (Pinus strobus L.) to oak-dominated communities through the use of thinning and prescribed fire. Additionally, the study documented implications of these treatments on small mammal activity in the southern Cumberland Plateau. Results Following basal area reductions ranging from 30 to 60% and three prescribed fires across three sites, mean oak seedling densities rose from 10 200 ha−1 to 17 900 ha−1. Post-treatment oak seedling densities were related to pre-treatment densities (R2 = 0.55, P < 0.0001) and the number of oak trees >20 cm diameter within 10 m of plot center (R2 = 0.15, P = 0.01). Three years after the last prescribed fire, bat activity (mean passes per night) was significantly higher in the treated stands compared to adjacent undisturbed forest. We did not detect any significant differences in rodent activity between our treated stands and forest controls for two of the three years studied. Conclusions The results of this study highlighted the within-stand variation that drives post-harvest vegetation trajectories. Three years after the last prescribed fire, bats exhibited higher foraging activity in the treated sites that had lower basal area and very little midstory clutter. Our three-year summer monitoring of rodent activity following the last of the three prescribed fires revealed differences in rodent activity between our treated sites and adjacent forest controls only during 2018 (P = 0.001). These results will assist private landowners in the region as they consider the costs and benefits of oak forest restoration.


Author(s):  
Kent Keene ◽  
William Gulsby ◽  
Allison Colter ◽  
Darren A. Miller ◽  
Kristina Johannsen ◽  
...  

Commercial thinning and prescribed fire can improve habitat quality for white-tailed deer (Odocoileus virginianus) in lobolly pine (Pinus taeda) stands by increasing coverage of forage plants. However, the relationships among thinning intensity, prescribed fire, and deer forage have not been quantified. We estimated percent cover of deer forage plants in 5 loblolly pine stands thinned to 11 (low), 14 (medium), and 18 (high) m2/ha basal areas during 2017 in Georgia, USA. We applied prescribed fire during 2018. From years 1-2 post-treatment, cover of total deer forage increased 26% and 29% in the low and medium basal area treatments, respectively, compared to 19% in the high basal area treatment. Similarly, the increase in forb coverage was greater for the medium (13%) and low (11%) basal area treatments than the high (6%) basal area treatment. Increases in vine and bramble coverage were greater in unburned medium basal area units. Woody browse was not affected by any treatment. Our results suggest thinning loblolly pine stands to 14 m2/ha can increase coverage of deer forage plants during the first two growing seasons post-thin, but deer forage was not greater in stands thinned to <14 m2/ha two years post-thin.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1248
Author(s):  
Phillip J. van Mantgem ◽  
Anthony C. Caprio ◽  
Nathan L. Stephenson ◽  
Adrian J. Das

Prescribed fire reduces fire hazards by removing dead and live fuels (small trees and shrubs). Reductions in forest density following prescribed fire treatments (often in concert with mechanical treatments) may also lessen competition so that residual trees might be more likely to survive when confronted with additional stressors, such as drought. The current evidence for these effects is mixed and additional study is needed. Previous work found increased tree survivorship in low elevation forests with a recent history of fire during the early years of an intense drought (2012 to 2014) in national parks in the southern Sierra Nevada. We extend these observations through additional years of intense drought and continuing elevated tree mortality through 2017 at Sequoia and Kings Canyon National Parks. Relative to unburned sites, we found that burned sites had lower stem density and had lower proportions of recently dead trees (for stems ≤47.5 cm dbh) that presumably died during the drought. Differences in recent tree mortality among burned and unburned sites held for both fir (white fir and red fir) and pine (sugar pine and ponderosa pine) species. Unlike earlier results, models of individual tree mortality probability supported an interaction between plot burn status and tree size, suggesting the effect of prescribed fire was limited to small trees. We consider differences with other recent results and discuss potential management implications including trade-offs between large tree mortality following prescribed fire and increased drought resistance.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 556
Author(s):  
Mauricio Zapata-Cuartas ◽  
Bronson P. Bullock ◽  
Cristian R. Montes ◽  
Michael B. Kane

Intensive loblolly pine (Pinus taeda L.) plantation management in the southeastern United States includes mid-rotation silvicultural practices (MRSP) like thinning, fertilization, competitive vegetation control, and their combinations. Consistent and well-designed long-term studies considering interactions of MRSP are required to produce accurate projections and evaluate management decisions. Here we use longitudinal data from the regional Mid-Rotation Treatment study established by the Plantation Management Research Cooperative (PMRC) at the University of Georgia across the southeast U.S. to fit and validate a new dynamic model system rooted in theoretical and biological principles. A Weibull pdf was used as a modifier function coupled with the basal area growth model. The growth model system and error projection functions were estimated simultaneously. The new formulation results in a compatible and consistent growth and yield system and provides temporal responses to treatment. The results indicated that the model projections reproduce the observed behavior of stand characteristics. The model has high predictive accuracy (the cross-validation variance explained was 96.2%, 99.7%, and 98.6%; and the prediction root mean square distance was 0.704 m, 19.1 trees ha−1, and 1.03 m2ha−1 for dominant height (DH), trees per hectare (N), and basal area (BA), respectively), and can be used to project the current stand attributes following combinations of MRSP and with different thinning intensities. Simulations across southern physiographic regions allow us to conclude that the most overall ranking of MRSP after thinning is fertilization + competitive vegetation control (Fert + CVC) > fertilization only (Fert) > competitive vegetation control only (CVC), and Fert + CVC show less than additive effect. Because of the model structure, the response to treatment changes with location, age of application, and dominant height growth as indicators of site quality. Therefore, the proposed model adequately represents regional growth conditions.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Yuan Gong ◽  
Christina L. Staudhammer ◽  
Susanne Wiesner ◽  
Gregory Starr ◽  
Yinlong Zhang

Understanding plant phenological change is of great concern in the context of global climate change. Phenological models can aid in understanding and predicting growing season changes and can be parameterized with gross primary production (GPP) estimated using the eddy covariance (EC) technique. This study used nine years of EC-derived GPP data from three mature subtropical longleaf pine forests in the southeastern United States with differing soil water holding capacity in combination with site-specific micrometeorological data to parameterize a photosynthesis-based phenological model. We evaluated how weather conditions and prescribed fire led to variation in the ecosystem phenological processes. The results suggest that soil water availability had an effect on phenology, and greater soil water availability was associated with a longer growing season (LOS). We also observed that prescribed fire, a common forest management activity in the region, had a limited impact on phenological processes. Dormant season fire had no significant effect on phenological processes by site, but we observed differences in the start of the growing season (SOS) between fire and non-fire years. Fire delayed SOS by 10 d ± 5 d (SE), and this effect was greater with higher soil water availability, extending SOS by 18 d on average. Fire was also associated with increased sensitivity of spring phenology to radiation and air temperature. We found that interannual climate change and periodic weather anomalies (flood, short-term drought, and long-term drought), controlled annual ecosystem phenological processes more than prescribed fire. When water availability increased following short-term summer drought, the growing season was extended. With future climate change, subtropical areas of the Southeastern US are expected to experience more frequent short-term droughts, which could shorten the region’s growing season and lead to a reduction in the longleaf pine ecosystem’s carbon sequestration capacity.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 935
Author(s):  
Mohammad Bataineh ◽  
Ethan Childs

The need for a comprehensive and mechanistic understanding of competition has never been more important as plants adapt to a changing environment and as forest management evolves to focus on maintaining and enhancing complexity. With the recent decline in shortleaf pine (Pinus echinata Mill.) land area, it is critical to determine the effects of competition on shortleaf pine and its performance against loblolly pine (Pinus taeda L.), the preferred planted replacement. We evaluate differences in shortleaf and loblolly pine 10 year mean basal area increment (BAI) and crown dimensions across a gradient of neighborhoods. Linear mixed-effects regression models were developed using BAI and several crown metrics as responses and crowding, competitor species abundance and identity, and initial size and species identity of focal tree as predictors. Crowding of focal trees negatively impacted BAI and crown size (p < 0.001, respectively). Although loblolly pine had three times higher BAI as compared to shortleaf pine within similar neighborhoods, BAI was variable, and the crowding effect did not differ between shortleaf and loblolly pine (p ranged from 0.51–0.99). Competitive impacts on focal trees did not differ by competitor identity (p ranged from 0.07–0.70). Distance-independent competition indices better explained the variation in BAI and horizontal crown metrics, while distance-dependent size ratios were more effective at evaluating vertical crown metrics. These findings highlight shortleaf pine competitive potential in mature, natural-origin stands and provide support for the restoration of pine–hardwood and hardwood–pine stratified mixtures as well as management of shortleaf pine at long rotations.


Sign in / Sign up

Export Citation Format

Share Document