The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium

Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Donat Demanet ◽  
François Renardy ◽  
Kris Vanneste ◽  
Denis Jongmans ◽  
Thierry Camelbeeck ◽  
...  

As part of a paleoseismological investigation along the Bree fault scarp (western border of the Roer Graben), various geophysical methods [electrical profiling, electromagnetic (EM) profiling, refraction seismic tests, electrical tomography, ground‐penetrating radar (GPR), and high‐resolution reflection seismic profiles] were used to locate and image an active fault zone in a depth range between a few decimeters to a few tens of meters. These geophysical investigations, in parallel with geomorphological and geological analyses, helped in the decision to locate trench excavations exposing the fault surfaces. The results could then be checked with the observations in four trenches excavated across the scarp. Geophysical methods pointed out anomalies at all sites of the fault position. The contrast of physical properties (electrical resistivity and permittivity, seismic velocity) observed between the two fault blocks is a result of a differences in the lithology of the juxtaposed soil layers and of a change in the water table depth across the fault. Extremely fast techniques like electrical and EM profiling or seismic refraction profiles localized the fault position within an accuracy of a few meters. In a second step, more detailed methods (electrical tomography and GPR) more precisely imaged the fault zone and revealed some structures that were observed in the trenches. Finally, one high‐resolution reflection seismic profile imaged the displacement of the fault at depths as large as 120 m and filled the gap between classical seismic reflection profiles and the shallow geophysical techniques. Like all geophysical surveys, the quality of the data is strongly dependent on the geologic environment and on the contrast of the physical properties between the juxtaposed formations. The combined use of various geophysical techniques is thus recommended for fault mapping, particularly for a preliminary investigation when the geological context is poorly defined.

2005 ◽  
Vol 42 (4) ◽  
pp. 1105-1115 ◽  
Author(s):  
O Meric ◽  
S Garambois ◽  
D Jongmans ◽  
M Wathelet ◽  
J L Chatelain ◽  
...  

Several geophysical techniques (electromagnetic profiling, electrical tomography, seismic refraction tomography, and spontaneous potential and seismic noise measurement) were applied in the investigation of the large gravitational mass movement of Séchilienne. France. The aim of this study was to test the ability of these methods to characterize and delineate the rock mass affected by this complex movement in mica schists, whose lateral and vertical limits are still uncertain. A major observation of this study is that all the zones strongly deformed (previously and at present) by the movement are characterized by high electrical resistivity values (>3 kΩ·m), in contrast to the undisturbed mass, which exhibits resistivity values between a few hundred and 1 kΩ·m. As shown by the surface observations and the seismic results, this resistivity increase is due to a high degree of fracturing associated with the creation of air-filled voids inside the mass. Other geophysical techniques were tested along a horizontal transect through the movement, and an outstanding coherency appeared between the geophysical anomalies and the displacement rate curve. These preliminary results illustrate the benefits of combined geophysical techniques for characterizing the rock mass involved in the movement. Results also suggest that monitoring the evolution of the rock mass movement with time-lapse geophysical surveys could be beneficial.Key words: gravitational movement, geophysical methods, Séchilienne.


2021 ◽  
Author(s):  
Ulrich Polom ◽  
Rebekka Mecking ◽  
Phillip Leineweber ◽  
Andreas Omlin

<p>In the North German Basin salt tectonics generated a wide range of evaporite structures since the Upper Triassic, resulting in e.g. extended salt walls, salt diapirs, and salt pillows in the depth range up to 8 km. Due to their trap and seal properties these structures were in the focus of hydrocarbon exploration over many decades, leading to an excellent mapping of their geometries below 300 m in depth. During salt rise Rotliegend formations were partly involved as a constituent. Some structures penetrated the salt table, some also the former surface. Dissolution (subrosion) and erosion of the salt cap rock by meteoric water took place, combined with several glacial and intraglacial overprints. Finally the salt structures were covered by pleistocene and holocene sediments. This situation partly resulted in proneness for ongoing karstification of the salt cap rock, leading to e.g. local subsidence and sinkhole occurrence at the surface. The geometry, structure and internal lithology of these shallow salt cap rocks are widely unknown. Expanding urban and industrial development, water resources management and increasing climate change effects enhance the demands for shallow mapping and characterization of these structures regarding save building grounds and sustainable water resources.</p><p>Results of shallow drilling investigations of the salt cap rock and the overburden show unexpectedly heterogenous subsurface conditions, yielding to limited success towards mapping and characterization. Thus, shallow high-resolution geophysical methods are in demand to close the gaps with preferred focus of applicability in urban and industrial environments. Method evaluations starting in 2010 geared towards shallow high-resolution reflection seismic to meet the requirements of both depth penetration and structure resolution. Since 2017 a combination of S-wave and P-wave seismic methods including depth calibrations by Vertical Seismic Profiling (VSP) enabled 2.5D subsurface imaging starting few meters below the surface up to several hundred meters depth in 0.5-5 m resolution range, respectively. The resulting profiles image strong variations along the boundaries and on top of the salt cap rock. Beside improved mapping capabilities, aim of research is the development of characteristic data features to differentiate save and non-save areas.</p>


2020 ◽  
Author(s):  
Tamara Mathys ◽  
Christin Hilbich ◽  
Cassandra E.M. Koenig ◽  
Lukas Arenson ◽  
Christian Hauck

<p>With climate change and the associated continuing recession of glaciers, water security, especially in regions depending on the water supply from glaciers, is threatened. In this context, the understanding of permafrost distribution and its degradation is of increasing importance as it is currently debated whether ground ice can be considered as a significant water reservoir and as an alternative resource of fresh water that could potentially moderate water scarcity during dry seasons in the future. Thus, there is a pressing need to better understand how much water is stored as ground ice in areas with extensive permafrost occurrence and how meltwater from permafrost degradation may contribute to the hydrological cycle in the region.</p><p>Although permafrost and permafrost landforms in the Central Andes are considered to be abundant and well developed, the data is scarce and understanding of the Andean cryosphere lacking, especially in areas devoid of glaciers and rock glaciers.</p><p>In the absence of boreholes and test pits, geophysical investigations are a feasible and cost-effective technique to detect ground ice occurrences within a variety of landforms and substrates. In addition to the geophysical surveys themselves, upscaling techniques are needed to estimate ground ice content, and thereby future water resources, on larger spatial scales. To contribute to reducing the data scarcity regarding ground ice content in the Central Andes, this study focuses on the permafrost distribution and the ground ice content (and its water equivalent) of two catchments in the semi-arid Andes of Chile and Argentina. Geophysical methods (Electrical Resistivity Tomography, ERT and Refraction Seismic Tomography, RST) were used to detect and quantify ground ice in the study regions in the framework of environmental impact assessments in mining areas. Where available, ERT and RST measurements were quantitatively combined to estimate the volumetric ground ice content using the Four Phase Model (Hauck et al., 2011). Furthermore, we developed one of the first methodologies for the upscaling of these geophysical-based ground ice quantifications to an entire catchment in order to estimate the total ground ice volume in the study areas.</p><p>In this contribution we will present the geophysical data, the upscaling methodology used to estimate total ground ice content (and water equivalent) of permafrost areas, and some first estimates of total ground ice content in rock glacier and rock glacier free areas and compare them to conventional estimates using remotely sensed data.</p><p> </p><p>Hauck, C., Böttcher, M., and Maurer, H. (2011). A new model for estimating subsurface ice content based on combined electrical and seismic datasets, The Cryosphere, 5: 453-468.</p>


Geophysics ◽  
1976 ◽  
Vol 41 (4) ◽  
pp. 780-794 ◽  
Author(s):  
H. R. Espey

This report provides statistics on worldwide use of geophysical methods in 1975. Data were obtained primarily through a survey questionnaire which was mailed out to more than 1500 companies, government agencies, and universities that use geophysical techniques for petroleum exploration, oceanography, engineering, mining, geothermal exploration, and groundwater exploration. Response to the survey was excellent and provided detailed information on more than 2100 geophysical surveys. Data on unit costs, methods used, and line‐miles covered are believed to be more accurate this year as a result of better cooperation from industry in filling out the questionnaires. Computer processing was utilized in tabulating the statistics to provide increased accuracy and detail. Data not supplied on the questionnaire for costs or line mileage were estimated on the basis of worldwide averages to produce a more comprehensive report.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1295-1309 ◽  
Author(s):  
Ranajit Ghose ◽  
Vincent Nijhof ◽  
Jan Brouwer ◽  
Yoshikazu Matsubara ◽  
Yasuhiro Kaida ◽  
...  

In shallow engineering‐geophysical applications, there is a lack of controlled, nondestructive, high‐resolution mapping tools, particularly for the target depth that ground‐penetrating radar cannot reach but which is too shallow for other conventional geophysical methods. For soft soil, this corresponds to a depth of 2 to 30 m. We have developed a portable, high‐frequency P-wave vibrator system that is capable of bridging this gap. As far as the important contribution of the seismic source is concerned, penetration and resolution can be individually controlled through easy modulation of the sweep signal generated by this electromagnetic vibrator. The feasibility of this system has been tested in shallow (10–50 m) to very shallow (0–10 m) applications. Seven field data sets representing varying geology, site conditions, and exploration targets are presented to illustrate the applicability. The first three examples show the potential of this portable vibrator source in shallow applications. Under favorable situations, a maximum resolution of about 20 cm for events located at 15–30 m depth could be achieved. Because high‐frequency seismic waves suffer from severe attenuation in the dry, unsaturated weathered zone, the penetration is relatively limited when the water table is deeper than 4–5 m. The fourth to seventh field examples illustrate very shallow applications at noisy, asphalt‐paved urban sites that are often encountered in civil, geotechnical, and environmental engineering projects. The prospecting targets were thin soil layers or small buried objects. On asphalt, the vibrator can produce high‐frequency energy easily. The fourth example shows high‐resolution delineation of very shallow soil structures. The last three examples present successful location of buried bodies—often small and closely spaced—in soft soil at depths of 0.5 to 5 m. We observe well‐defined reflection events of frequency exceeding 200 Hz. These results suggest that high‐frequency seismic reflection imaging using the portable vibrator system can indeed serve as a powerful, nondestructive technique for shallow to very shallow underground prospecting.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Andy A. Bery

This paper discussed a novel application called merge-optimization method that combines resistivity and seismic refraction data to provide a detailed knowledge of the studied site. This method is interesting because it is able to show strong accuracy of two geophysical imaging methods based on many of data points collected from the conducted geophysical surveys of disparate data sets based strictly on geophysical models as an aid for model integration for two-dimensional environments. The geophysical methods used are high resolution methods. The resistivity imaging used in this survey is able to resolve the subsurface condition of the studied site with low RMS error (less than 2.0%) and 0.5 metre electrodes interval. For seismic refraction method, high resolution of seismic is used for correlation with resistivity results. Geophones spacing is 1.0 metre and the total number of shot-points is 15, which provides very dense data point. The algorithms of merge-optimization have been applied to two data sets collected at the studied site. The resulting images have been proven to be successful because they satisfy the data and are geometrically similar. The regression coefficient found for conductivity-resistivity correlation is 95.2%.


Geophysics ◽  
1948 ◽  
Vol 13 (4) ◽  
pp. 550-555
Author(s):  
L. C. Armstrong ◽  
D. M. Davidson

This is a nontechnical paper dealing with the potentialities of geophysical methods in the search for metallic ore bodies which do not outcrop. It emphasizes what exploration engineers are entitled to expect as well as to demand from geophysical surveys. Harmful misconceptions and frustrations have arisen among mining men through lack of understanding of the possibilities of the various methods, and through confusion traceable to the loose claims and looser interpretation of results on the part of some geophysical surveyors. The miner should be made to understand that geophysical methods merely measure physical effects, either inherent, or induced, in various rock bodies, and that high geological competence is usually needed to judge whether anomalous measurements may be correlative with ore, likely ore‐bearing structures or with features totally unrelated to ore occurrences. Since they do not put any tags on ore bodies, as some have been led to believe, the capabilities and limitations of the methods need further clarification. The biggest hurdles to overcome before geophysics can reach a fuller measure of its true potentialities in ore finding are, first, the development of techniques for mitigating or eliminating the anomalous effects of overburden; second, development of methods for detection of disseminated metallic sulphide deposits; third, perfection of techniques of investigating the rocks surrounding bore holes for appreciable distances; fourth, the improvement of techniques for geophysical prospecting underground; fifth, independent consultation before a survey is started to weigh dispassionately the chances for success (geophysical surveys should be checked with much pains and precision by repeating traverses and readings); sixth, reduction in costs for all methods; and seventh, modification and improvement in efficiency of equipment with special attention to increasing depth range. Finally, there is a critical need for research, long‐range, indirect, fundamental research, as well as direct research on known ore deposits which have not been disturbed too much by development or mining. This latter will be most profitably carried out if undertaken by private mining companies on their own properties and with complete cooperation from their own geological staffs.


Geophysics ◽  
1979 ◽  
Vol 44 (10) ◽  
pp. 1740-1754 ◽  
Author(s):  
M. G. Whitmire

This report presents statiscal data on worldwide geophysical activity in 1978. These data were compiled from survey questionaires that were completed by more than 500 companies, contractors, government agencies, and institutions located throughout the free world. We have attempted to gather information from users of geophysical techniques in the areas of petroleum, mining, geothermal, and groundwater exploration; and from those who employ geophysical methods in engineering, oceanography, and research. Information was gathered on airborne, drilled hole, land, and marine geophysical surveys. Statistics were compiled on miles of coverage and acquisition cost. Data not supplied on the questionnaires for cost and line‐miles were estimated on the basis of massive statistical averages for the area and technique reported. This process is necessary to avoid distortion of individual statistical items.


Geophysics ◽  
1980 ◽  
Vol 45 (10) ◽  
pp. 1563-1579 ◽  
Author(s):  
M. G. Whitmire

This report presents statistical data on geophysical activity in 1979. The data were compiled from survey questionnaires that were completed by more than 500 companies, contractors, government agencies, and institutions throughout the free world. We have gathered information from users of geophysical techniques in the areas of petroleum, mining, geothermal, and groundwater exploration; and from those who employ geophysical methods in engineering surveys, oceanography, and research. Data were gathered on airborne, drill hole, land, and marine geophysical surveys. Statistics were compiled on miles of coverage, drill hole footage, time spent in crew months or man months, and acquisition cost.


Sign in / Sign up

Export Citation Format

Share Document