The evaluation of community livability quantifies the demands of human settlement at the micro scale, supporting urban governance decision-making at the macro scale. Big data generated by the urban management of government agencies can provide an accurate, real-time, and rich data set for livability evaluation. However, these data are intertwined by overlapping geographical management boundaries of different government agencies. It causes the difficulty of data integration and utilization when evaluating community livability. To address this problem, this paper proposes a scheme of partitioning basic geographical space into grids by optimally integrating various geographical management boundaries relevant to enterprise-level big data. Furthermore, the system of indexes on community livability is created, and the evaluation model of community livability is constructed. Taking Wuhan as an example, the effectiveness of the model is verified. After the evaluation, the experimental results show that the livability evaluation with reference to our basic geographic grids can effectively make use of governmental big data to spatially identify the multi-dimensional characteristics of a community, including management, environment, facility services, safety, and health. Our technical solution to evaluate community livability using gridded basic urban geographical data is of large potential in producing thematic data of community, constructing a 15-min community living circle of Wuhan, and enhancing the ability of the community to resist risks.