3D gravity inversion through an adaptive-learning procedure

Geophysics ◽  
2009 ◽  
Vol 74 (3) ◽  
pp. I9-I21 ◽  
Author(s):  
Fernando J. Silva Dias ◽  
Valéria C. Barbosa ◽  
João B. Silva

We have developed a gravity inversion method to estimate a 3D density-contrast distribution producing strongly interfering gravity anomalies. The interpretation model consists of a grid of 3D vertical, juxtaposed prisms in the horizontal and vertical directions. Iteratively, our approach estimates the 3D density-contrast distribution that fits the observed anomaly within the measurement errors and favors compact gravity sources closest to prespecified geometric elements such as axes and points. This method retrieves the geometry of multiple gravity sources whose density contrasts (positive and negative values) are prescribed by the interpreter through the geometric element. At the first iteration, we set an initial interpretation model and specify the first-guess geometric elements and their target density contrasts. Each geometric element operates as the first-guess skeletal outline of the entire homogeneous gravity source or any of its homogeneous parts to be reconstructed. From the second iteration on, our method automatically redefines a new set of geometric elements, the associated target density contrasts, and a new interpretation model whose number of prisms increases with the iteration. The iteration stops when the geometries of the estimated sources are invariant along successive iterations. Tests on synthetic data from geometrically complex bodies and on field data collected over a mafic-ultramafic body and a volcanogenic sedimentary sequence located in the Tocantins Province, Brazil, confirmed the potential of our method in producing a sharp image of multiple and adjacent bodies.

Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. I49-I57 ◽  
Author(s):  
Fernando J. S. Silva Dias ◽  
Valéria C. F. Barbosa ◽  
João B. C. Silva

We have developed an iterative scheme for inverting gravity data produced by salt bodies with density contrasts relative to the sediments varying from positive to negative, crossing, in this way, the nil zone. Our inversion method estimates a 3D density-contrast distribution, through a piecewise constant function defined on a user-specified grid of cells. It consists of two nested iterative loops. The outer loop uses an adaptive learning strategy that starts with a coarse grid of cells, a set of first-guess geometric elements (axes and points) and the corresponding assigned density contrasts. From the second iteration on, this strategy refines the grid and automatically creates a new set of geometric elements (points only) and associated density contrasts. Each geometric element operates as the first-guess skeletal outline of a section of the salt body to be imaged. The inner loop estimates the 3D density-contrast distribution for the grid of cells and for the set of geometric elements defined in the outer loop. The outer loop allows for easy incorporation of prior geologic information about the lithologic units and automatic evolution of the prior information. The inner loop forces the estimated density contrast of each cell to be close either to a null or to a non-null prespecified value. The iteration stops when the geometries of the estimated salt bodies are invariant along successive iterations. We apply our method to synthetic gravity data produced by a homogeneous salt body embedded in heterogeneous sediments. We tested two geologic hypotheses about the real gravity data from Galveston Island salt dome, USA. In the first, the estimated salt body attains a maximum bottom depth of 5 km, whereas in the second hypothesis, it is shallower and discloses an overhang. Both solutions fit the data and are feasible geologically, so both hypotheses are acceptable.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. J51-J58 ◽  
Author(s):  
João B. Silva ◽  
Denis C. Costa ◽  
Valéria C. Barbosa

We present a method to estimate the basement relief as well as the density contrast at the surface and the hyperbolic decaying factor of the density contrast with depth, assuming that the gravity anomaly and the depth to the basement at a few points are known. In both cases, the interpretation model is a set of vertical rectangular 2D prisms whose thicknesses are parameters to be estimated and that represent the depth to the interface separating sediments and basement. The solutions to both problems are stable because of the incorporation of additional prior information about the smoothness of the estimated relief and the depth to the basement at a few locations, presumably provided by boreholes. The method was tested with synthetic gravity anomalies produced by simulated sedimentary basins with smooth relief, providing not only well-resolved estimated relief, but also good estimates for the density contrasts at the surface and for the decaying factors of the density contrast with depth. The method was applied to the Bouguer anomaly from Recôncavo Basin, estimating the surface density contrast and the decaying factor of the density contrast with depth as [Formula: see text] and [Formula: see text], respectively.


2017 ◽  
Vol 6 (1) ◽  
pp. 193-198 ◽  
Author(s):  
Kunal Kishore Singh ◽  
Upendra Kumar Singh

Abstract. Particle swarm optimization (PSO) is a global optimization technique that works similarly to swarms of birds searching for food. A MATLAB code in the PSO algorithm has been developed to estimate the depth to the bottom of a 2.5-D sedimentary basin and coefficients of regional background from observed gravity anomalies. The density contrast within the source is assumed to vary parabolically with depth. Initially, the PSO algorithm is applied on synthetic data with and without some Gaussian noise, and its validity is tested by calculating the depth of the Gediz Graben, western Anatolia, and the Godavari sub-basin, India. The Gediz Graben consists of Neogen sediments, and the metamorphic complex forms the basement of the graben. A thick uninterrupted sequence of Permian–Triassic and partly Jurassic and Cretaceous sediments forms the Godavari sub-basin. The PSO results are better correlated with results obtained by the Marquardt method and borehole information.


Geophysics ◽  
1988 ◽  
Vol 53 (6) ◽  
pp. 837-845 ◽  
Author(s):  
Yufu Chai ◽  
William J. Hinze

Mapping of an interface above which the density contrast varies exponentially with depth, as is common at the basement surface of sedimentary basins, is efficiently achieved by a theoretically precise gravity method which can be applied to either profile data or twodimensional data. The contrast in mass above the interface is modeled by an array of vertical rectangular prisms with density contrasts varying exponentially with depth. Gravity anomalies due to the prisms are calculated in the wavenumber domain and then converted to the space domain. The precision of the inverse numerical Fourier transform in this procedure is significantly increased by a shift‐sampling technique based on the discrete Fourier deviation equation. Depth to the interface is determined by iterative adjustment of the vertical extent of the prisms in accordance with observed gravity anomaly data. The basement surface of the Los Angeles basin, California, calculated by this method, closely duplicates the published configuration based on drillhole data and seismic data.


Geophysics ◽  
1986 ◽  
Vol 51 (4) ◽  
pp. 988-994 ◽  
Author(s):  
R. M. René

A gravity inversion method is developed by iteratively applying open, reject, and fill (O-R-F) criteria within a model space comprising a great many rectangular prisms. Each prism is assigned a density contrast. The modeling procedure consists of filling some prisms while leaving others empty. Only one element is filled for each pass. Generally, elements are added only to the periphery of the growing model. Models can be allowed to grow in any combination of directions, or in all directions. By application of a “shape‐of‐anomaly” fill criterion, the model rapidly attains a form which yields gravity approximating the given gravity scaled down by some constant factor. As the model continues to grow, this scale factor approaches unity. The method readily yields inverse models comprising several thousand individual prisms. Examples presented here give applications to 2-D problems. The method is readily applicable to [Formula: see text] and 3-D problems as well. Overhanging elements are obtained by appropriate use of model constraints. Initial density models are not required but they are allowed. An “expanding seed” method is explained which efficiently generates sets of inverse models by using dense models to initiate development of less dense models. The method is applied to inversion of several synthetic gravity profiles from known density models. A density model is also derived from gravity across the Troodos massif in Cyprus. Using a density contrast of [Formula: see text], the resultant model extends from the surface to a depth of 20.6 km and has a center of mass distribution displaced approximately 7 km to the northeast of the anomaly peak.


2016 ◽  
Author(s):  
Kunal Kishore Singh ◽  
Upendra Kumar Singh

Abstract. Particle swarm optimization (PSO) is a global optimization technique that works similarly to swarms of birds searching for food. A Matlab code in PSO algorithm is developed to estimate the depth to the bottom of a 2.5-D sedimentary basin and coefficients of regional background from observed gravity anomalies. The density contrast within the source is assumed to be varying parabolically with depth. Initially, the PSO algorithm is applied on synthetic data with and without some Gaussian noise and its validity is tested by calculating the depth of the Gediz Graben, Western Anatolia and Godavari sub-basin, India. The Gediz Graben consists of Neogen sediments and the metamorphic complex forms the basement of the Graben. A thick uninterrupted sequence of Permian-Triassic and partly Jurassic and Cretaceous sediments forms the Godavari sub-basin. The PSO results are better than the results obtained by Marquardt method and the results are well correlated with borehole information.


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. I21-I28 ◽  
Author(s):  
Cristiano M. Martins ◽  
Valeria C. Barbosa ◽  
João B. Silva

We have developed a gravity-inversion method for simultaneously estimating the 3D basement relief of a sedimentary basin and the parameters defining a presumed parabolic decay of the density contrast with depth in a sedimentary pack, assuming prior knowledge about the basement depth at a few points. The sedimentary pack is approximated by a grid of 3D vertical prisms juxtaposed in both horizontal directions of a right-handed coordinate system. The prisms’ thicknesses represent the depths to the basement and are the parameters to be estimated from the gravity data. To estimate the parameters defining the parabolic decay of the density contrast with depth and to produce stable depth-to-basement estimates, we imposed smoothness on the basement depths and proximity between estimated and known depths at boreholes. We applied our method to synthetic data from a simulated complex 3D basement relief with two sedimentary sections having distinct parabolic laws describing the density-contrast variation with depth. The results provide good estimates of the true parameters of the parabolic law of density-contrast decay with depth and of the basement relief. Inverting the gravity data from the onshore and part of the shallow offshore Almada Basin on Brazil’s northeastern coast shows good correlation with known structural features.


Geophysics ◽  
1992 ◽  
Vol 57 (1) ◽  
pp. 131-135 ◽  
Author(s):  
F. Guspí

The use of variable‐density contrasts in gravity inversion has gained increasing importance in recent years due to the necessity of constructing more realistic models of geophysical structures such as sedimentary basins. Linear, quadratic, and exponential variations, either in the space or in the frequency domain, are the basis of several methods. See, among others, the papers by Granser (1987), Chai and Hinze (1988), Reamer and Ferguson (1989), and Rao et al. (1990). Guspí (1990) used polynomial density‐depth functions for inverting gravity anomalies into 2-D polygons in the space domain.


2021 ◽  
Author(s):  
Francesca Maddaloni ◽  
Damien Delvaux ◽  
Magdala Tesauro ◽  
Taras Gerya ◽  
Carla Braitenberg

<p>The Congo basin (CB), considered as a typical intracratonic basin, due its slow and long-lived subsidence history and the largely unknown formation mechanisms, occupies a large part of the Congo craton, derived from the amalgamation of different cratonic pieces. It recorded the history of deposition of up to one billion years of sediments, one of the longest geological records on Earth above a metamorphic basement. The CB initiated very probably as a failed rift in late Mesoproterozoic and evolved during the Neoproterozoic and Phanerozoic under the influence of far-field compressional tectonic events, global climate fluctuation between icehouse and greenhouse conditions and drifting of Central Africa through the South Pole then towards its present-day equatorial position. Since Cretaceous, the CB has been subjected to an intraplate compressional setting due to ridge-push forces related to the spreading of the South Atlantic Ocean, where most of sediments are being eroded and accumulated only in the center of the basin.</p><p>In this study, we first reconstructed the stratigraphy, the depths of the main seismic horizons, and the tectonic history of the CB, using geological and exploration geophysical data. In particular, we interpreted about 2600 km of seismic reflection profiles and well log data located inside the central area of the CB (Cuvette Centrale). We used the obtained results to constrain the gravity field data that we analyzed, in order to reconstruct the depth of the basement and investigate the shallow crustal structure of the basin. To this purpose, we used a gravity inversion method with two different density contrasts between the surface sediments and crystalline rocks.</p><p>The results evidence NW-SE trending structures, also revealed by magnetic and seismic data, corresponding to the alternation of highs and sediments filled topographic depressions, related to rift structures, characterizing the first stage of evolution of the CB. They also show a general good consistency between the seismic and gravity basement along the seismic profiles and evidence the presence of possible high-density bodies in the shallow to deep crust. The identified structures are prevalently the product of an extensional tectonics, which likely acted in more than one direction.</p><p>Therefore, we performed 3D numerical simulations to test the hypothesis of the formation of the CB as multi-extensional rift in a cratonic area, using the thermomechanical I3ELVIS code, based on a combination of a finite difference method applied on a uniformly spaced Eulerian staggered grid with the marker-in-cell technique. To this purpose, the numerical tests have been conducted considering a sub-circular weak zone in the central part of the cratonic lithosphere and applying a velocity of 2.5 cm/yr in two orthogonal directions (N-S and E-W). We repeated these numerical tests by increasing the size of the weak zone and varying its lithospheric thickness. The results show the formation of a circular basin in the central part of the cratonic lithosphere, characterized by a series of highs and depressions, consistent with those obtained from geophysical/geological reconstructions.</p>


Sign in / Sign up

Export Citation Format

Share Document