Dual-well 3D vertical seismic profile enabled by distributed acoustic sensing in deepwater Gulf of Mexico

2015 ◽  
Vol 3 (3) ◽  
pp. SW11-SW25 ◽  
Author(s):  
Han Wu ◽  
Wai-Fan Wong ◽  
Zhaohui Yang ◽  
Peter B. Wills ◽  
Jorge L. Lopez ◽  
...  

We have acquired and processed 3D vertical seismic profile (VSP) data recorded simultaneously in two wells using distributed acoustic sensing (DAS) during the acquisition of the 2012 Mars 4D ocean-bottom seismic survey in the deepwater Gulf of Mexico. The objectives of the project were to assess the quality of DAS data recorded in fiber-optic cables from the surface to the total depth, to demonstrate the efficacy of the DAS VSP technology in a deepwater environment, to derisk the use of the technology for future water injection or production monitoring without intervention, and to exploit the velocity information that 3D VSP data provide for evaluating and updating the velocity model. We evaluated the advantages of DAS VSP to reduce costs and intrusiveness, and we determined that high-quality images can be obtained from relatively noisy raw 3D DAS VSP data, as evidenced by the well 1 image, probably the best 3D VSP image we have ever seen. Our results also revealed that the direct arrival traveltimes can be used to assess the quality of an existing velocity model and to invert for an improved velocity model. We identified issues with the DAS acquisition and the processing steps to mitigate them and to handle problems specific to DAS VSP data. We described the steps for conditioning the data before migration, reverse time migration, and postmigration processing to reduce noise artifacts. We outlined a novel first-break picking procedure that works even in the absence of a strong first arrival and a velocity diagnosis method to assess and validate velocity models and velocity updates. Finally, we determined potential applications to 4D monitoring of fluid movement around producer or injector wells, identification of active salt movements, and more accurate imaging and monitoring of complex structures around the wells.

2019 ◽  
Vol 7 (1) ◽  
pp. SA11-SA19 ◽  
Author(s):  
Julia Correa ◽  
Roman Pevzner ◽  
Andrej Bona ◽  
Konstantin Tertyshnikov ◽  
Barry Freifeld ◽  
...  

Distributed acoustic sensing (DAS) can revolutionize the seismic industry by using fiber-optic cables installed permanently to acquire on-demand vertical seismic profile (VSP) data at fine spatial sampling. With this, DAS can solve some of the issues associated with conventional seismic sensors. Studies have successfully demonstrated the use of DAS on cemented fibers for monitoring applications; however, such applications on tubing-deployed fibers are relatively uncommon. Application of tubing-deployed fibers is especially useful for preexisting wells, where there is no opportunity to install a fiber behind the casing. In the CO2CRC Otway Project, we acquired a 3D DAS VSP using a standard fiber-optic cable installed on the production tubing of the injector well. We aim to analyze the quality of the 3D DAS VSP on tubing, as well as discuss lessons learned from the current DAS deployment. We find the limitations associated with the DAS on tubing, as well as ways to improve the quality of the data sets for future surveys at Otway. Due to the reduced coupling and the long fiber length (approximately 20 km), the raw DAS records indicate a high level of noise relative to the signal. Despite the limitations, the migrated 3D DAS VSP data recorded by cable installed on tubing are able to image interfaces beyond the injection depth. Furthermore, we determine that the signal-to-noise ratio might be improved by reducing the fiber length.


2016 ◽  
Vol 35 (7) ◽  
pp. 605-609 ◽  
Author(s):  
Mark E. Willis ◽  
David Barfoot ◽  
Andreas Ellmauthaler ◽  
Xiang Wu ◽  
Oscar Barrios ◽  
...  

Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


1984 ◽  
Vol 24 (1) ◽  
pp. 429
Author(s):  
F. Sandnes W. L. Nutt ◽  
S. G. Henry

The improvement of acquisition and processing techniques has made it possible to study seismic wavetrains in boreholes.With careful acquisition procedures and quantitative data processing, one can extract useful information on the propagation of seismic events through the earth, on generation of multiples and on the different reflections coming from horizons that may not all be accessible by surface seismic.An extensive borehole seismic survey was conducted in a well in Conoco's contract area 'Block B' in the South China Sea. Shots at 96 levels were recorded, and the resulting Vertical Seismic Profile (VSP) was carefully processed and analyzed together with the Synthetic Seismogram (Geogram*) and the Synthetic Vertical Seismic Profile (Synthetic VSP).In addition to the general interpretation of the VSP data, i.e. time calibration of surface seismic, fault identification, VSP trace inversion and VSP Direct Signal Analysis, the practical inclusion of VSP data in the reprocessing of surface seismic data was studied. Conclusions that can be drawn are that deconvolution of surface seismic data using VSP data must be carefully approached and that VSP can be successfully used to examine phase relationships in seismic data.


2016 ◽  
Vol 4 (4) ◽  
pp. SQ13-SQ22 ◽  
Author(s):  
Yingping Li ◽  
Ben Hewett

Previous diagnoses of surface seismic velocity models with vertical seismic profile (VSP) data in the Gulf of Mexico have indicated that shallow velocities were poorly constrained by VSP due to ringing caused by multiple casing strings. This ringing also hampered direct measurement of the seawater average velocity (SWAV) at a rig site with direct arrivals of a zero-offset VSP (ZVSP). We have directly measured the SWAV at a rig site with a known water depth by using differential times between primary water bottom multiples (WBMs) and direct first arrivals acquired in a marine VSP survey. We developed a procedure to process ZVSP-WBM signals for SWAV measurement. This WBM method is successfully applied to VSP data recorded at 27 rig sites in the deep-water environments of North and South America. Our results suggest that VSP processors should implement this method and add the SWAV measurement in their future velocity survey reports. We have estimated water bottom depths using differential times. We found that the estimated water depths are comparable with those acquired from sonar measurements by autonomous underwater vehicles, but with large uncertainties. The WBM method is extended by using data from a vertical incidence VSP to measure a profile of the SWAV along the path of a deviated well and evaluate possible lateral variations of SWAV. This method can potentially be applied to a time-lapse VSP to monitor temporal variations of SWAV. We also evaluated the application scope and limitations of the WBM method.


2021 ◽  
Author(s):  
Herurisa Rusmanugroho ◽  
Makky Sandra Jaya ◽  
M Hafizal Zahir ◽  
M Faizal Rahim

Abstract The performance of pre-stack depth migration (PSDM) on the fiber optic, distributed acoustic sensing (DAS), vertical seismic profile (VSP) data has rarely been reported. We show the results of PSDM for the fiber optic cables, newly developed and tested at a field in Canada. We apply Kirchhoff migration, Fresnel volume migration and reverse time migration (RTM) to the walkway VSP data to obtain high resolution images of the shallow to deeper structures and provide the performance analysis of the migration methods for the DAS VSP data.


2017 ◽  
Vol 36 (12) ◽  
pp. 987-993 ◽  
Author(s):  
Xiang Wu ◽  
Mark E. Willis ◽  
William Palacios ◽  
Andreas Ellmauthaler ◽  
Oscar Barrios ◽  
...  

Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. M81-M96 ◽  
Author(s):  
Kyle Harris ◽  
Don White ◽  
Claire Samson

Aquistore is a geologic [Formula: see text] storage project that is using a deep saline formation as a storage reservoir. From April 2015 to February 2016, approximately 36 kilotonnes of [Formula: see text] were injected into the reservoir at a depth of 3130–3350 m. We have developed an analysis of distributed acoustic sensing (DAS) 3D vertical seismic profiling data acquired in February 2016, marking the first seismic survey since injection began. The VSP data were processed in parallel with baseline preinjection data from a November 2013 survey, with the objective of detecting and characterizing the subsurface [Formula: see text] plume and evaluating the repeatability of DAS in a reservoir monitoring project. A single processing sequence was devised that (1) accurately imaged the reservoir for the baseline and monitor data and (2) attained adequate repeatability to observe time-lapse differences related to the presence of [Formula: see text]. Repeatability was somewhat compromised by the less advanced noise cancellation methodology of the DAS system used for the baseline survey. In the final cross-equalized migrated data volumes, normalized root-mean-square ([Formula: see text]rms) difference values of [Formula: see text] were attained at the reservoir level indicating good repeatability compared with most surface seismic studies. An injection-related amplitude anomaly with maximum [Formula: see text]rms values of approximately 0.7 is apparent in the Deadwood Formation of the reservoir, whereas no significant [Formula: see text]rms anomalies were observed near the injection and monitoring wells in the Black Island Member or above the reservoir.


Sign in / Sign up

Export Citation Format

Share Document