scholarly journals Functional anatomy of verbal fluency in people with schizophrenia and those at genetic risk

2000 ◽  
Vol 176 (1) ◽  
pp. 52-60 ◽  
Author(s):  
Sean A. Spence ◽  
Peter F. Liddle ◽  
Martin D. Stefan ◽  
Jonathan S. E. Hellewell ◽  
Tonmoy Sharma ◽  
...  

BackgroundPET studies of verbal fluency in schizophrenia report a failure of ‘deactivation’ of left superior temporal gyrus (STG) in the presence of activation of left dorsolateral prefrontal cortex (DLPFC), which deficit has been attributed to underlying ‘functional disconnectivity’.AimTo test whether these findings provide trait-markers for schizophrenia.MethodWe used H215O PET to examine verbal fluency in 10 obligate carriers of the predisposition to schizophrenia, 10 stable patients and 10 normal controls.ResultsWe found no evidence of a failure of left STG deactivation in carriers or patients. Instead, patients failed to deactivate the precuneus relative to other groups. We found no differences in functional connectivity between left DLPFC and left STG but patients exhibited significant disconnectivity between left DLPFC and anterior cingulate cortex.ConclusionsFailure of left STG ‘deactivation’ and left fronto-temporal disconnectivity are not consistent findings in schizophrenia; neither are they trait-markers for genetic risk. Prefrontal functional disconnectivity here may characterise the schizophrenic phenotype.

2011 ◽  
Vol 26 (S2) ◽  
pp. 1180-1180
Author(s):  
Y.K. Chen ◽  
E. Lee ◽  
G.S. Ungvari ◽  
J.Y. Lu ◽  
L. Shi ◽  
...  

IntroductionPrefrontal cortex and sex difference are involved in verbal fluency network described in normal participants. Stroke patients often have prefrontal cortex atrophy.ObjectivesTo investigate whether atrophy in subdivisions of prefrontal cortex and sex difference contribute to verbal fluency in non-aphasic stroke patients.AimTo understand the relationship between the atrophy of left dorsolateral prefrontal cortex and verbal performance in elderly poststroke women.Methods30 elderly (age> = 60 years old) women with non-aphasic ischemic stroke and 30 age-controlled stroke men recruited. Automatic segmentation methods were used to assess the volume of both sides of the whole prefrontal cortex, anterior cingulate cortex, orbital frontal cortex and dorsalateral prefrontal cortex (DLPFC), as well as white matter lesions (WMLs) volume. Mini-mental state examination (MMSE) and semantic verbal fluency test (VFT, category: foods and animals) were administered at 3 and 15 months after the index stroke.ResultsThe mean (s.d) age was 73.3 ± 7.2 in women and 72.1 ± 6.9 in men. Men had higher education years, less diabetes and higher MMSE scores (p < 0.05). At 3 months after stroke, volume of the left DLPFC was significantly correlated with VFT score in women rather than men, even after controlled by age, education years, neurological deficit, diabetes, WMLs volume and infarct location (partial r = 0.477, p = 0.018). At 15 months, this correlation remained significant (partial r = 0.548, p = 0.006) in women.ConclusionSex difference may be present in the neuropsychological mechanism of verbal fluency impairment in patients with cerebrovascular disease.


2014 ◽  
Vol 111 (4) ◽  
pp. 787-803 ◽  
Author(s):  
Michael J. Koval ◽  
R. Matthew Hutchison ◽  
Stephen G. Lomber ◽  
Stefan Everling

The dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC) have both been implicated in the cognitive control of saccadic eye movements by single neuron recording studies in nonhuman primates and functional imaging studies in humans, but their relative roles remain unclear. Here, we reversibly deactivated either dlPFC or ACC subregions in macaque monkeys while the animals performed randomly interleaved pro- and antisaccades. In addition, we explored the whole-brain functional connectivity of these two regions by applying a seed-based resting-state functional MRI analysis in a separate cohort of monkeys. We found that unilateral dlPFC deactivation had stronger behavioral effects on saccades than unilateral ACC deactivation, and that the dlPFC displayed stronger functional connectivity with frontoparietal areas than the ACC. We suggest that the dlPFC plays a more prominent role in the preparation of pro- and antisaccades than the ACC.


2015 ◽  
Vol 1 (4) ◽  
pp. 220-234 ◽  
Author(s):  
Peter M. Thompson ◽  
Dianne A. Cruz ◽  
Elizabeth A. Fucich ◽  
Dianna Y. Olukotun ◽  
Masami Takahashi ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Seung-Lark Lim ◽  
J. Bradley C. Cherry ◽  
Ann M. Davis ◽  
S. N. Balakrishnan ◽  
Oh-Ryeong Ha ◽  
...  

Abstract As children grow, they gradually learn how to make decisions independently. However, decisions like choosing healthy but less-tasty foods can be challenging for children whose self-regulation and executive cognitive functions are still maturing. We propose a computational decision-making process in which children estimate their mother’s choices for them as well as their individual food preferences. By employing functional magnetic resonance imaging during real food choices, we find that the ventromedial prefrontal cortex (vmPFC) encodes children’s own preferences and the left dorsolateral prefrontal cortex (dlPFC) encodes the projected mom’s choices for them at the time of children’s choice. Also, the left dlPFC region shows an inhibitory functional connectivity with the vmPFC at the time of children’s own choice. Our study suggests that in part, children utilize their perceived caregiver’s choices when making choices for themselves, which may serve as an external regulator of decision-making, leading to optimal healthy decisions.


Lupus ◽  
2019 ◽  
Vol 28 (14) ◽  
pp. 1678-1689 ◽  
Author(s):  
E Papadaki ◽  
E Kavroulakis ◽  
G Bertsias ◽  
A Fanouriakis ◽  
D Karageorgou ◽  
...  

The study examined the hypothesis that hypoperfusion in brain areas known to be involved in emotional disturbances in primary psychiatric disorders is also linked to emotional difficulties in systemic lupus erythematosus (SLE) and that these are not secondary to the physical and social burden incurred by the disease. Nineteen SLE patients without overt neuropsychiatric manifestations (non-NPSLE), 31 NPSLE patients, and 23 healthy controls were examined. Dynamic susceptibility contrast MRI was used and cerebral blood flow and cerebral blood volume values were estimated in six manually selected regions of interest of brain regions suspected to play a role in anxiety and depression (dorsolateral prefrontal cortex, ventromedial prefrontal cortex, anterior cingulate cortex, hippocampi, caudate nuclei and putamen). NPSLE patients reported high rates of anxiety and depression symptomatology. Significantly reduced cerebral blood flow and cerebral blood volume values were detected in the NPSLE group compared to healthy controls in the dorsolateral prefrontal cortex and ventromedial prefrontal cortex, bilaterally. Within the NPSLE group, anxiety symptomatology was significantly associated with lower perfusion in frontostriatal regions and in the right anterior cingulate gyrus. Importantly, the latter associations appeared to be specific to anxiety symptoms, as they persisted after controlling for depression symptomatology and independent of the presence of visible lesions on conventional MRI. In conclusion, hypoperfusion in specific limbic and frontostriatal regions is associated with more severe anxiety symptoms in the context of widespread haemodynamic disturbances in NPSLE.


2010 ◽  
Vol 23 (3) ◽  
pp. 107-115 ◽  
Author(s):  
Sophie Blanchet ◽  
Geneviève Gagnon ◽  
Cyril Schneider

This research investigated the contribution of the dorsolateral prefrontal cortex (DLPFC) in the attentional resources in episodic encoding for both verbal and non-verbal material. Paired-pulse transcranial magnetic stimulations (TMS) were used to interfere transiently with either the left or right DLPFC during encoding under full attention (FA) or under divided attention (DA) in a recognition paradigm using words and random shapes. Participants recognized fewer items after TMS over the left DLPFC than over the right DLPFC during FA encoding. However, TMS over the left DLPFC did not impair performance when compared to sham condition. Conversely, participants produced fewer items after TMS over the right DLPFC in DA encoding compared to sham condition, but not compared to TMS over the left DLPFC. These effects were found for both words and random shapes. These results suggest that the right DLPFC play an important role in successful encoding with a concomitant task regardless of the type of material.


2021 ◽  
pp. 1-11
Author(s):  
Daniela Smirni ◽  
Massimiliano Oliveri ◽  
Eliana Misuraca ◽  
Angela Catania ◽  
Laura Vernuccio ◽  
...  

Background: Recent studies showed that in healthy controls and in aphasic patients, inhibitory trains of repetitive transcranial magnetic stimulation (rTMS) over the right prefrontal cortex can improve phonemic fluency performance, while anodal transcranial direct current stimulation (tDCS) over the left prefrontal cortex can improve performance in naming and semantic fluency tasks. Objective: This study aimed at investigating the effects of cathodal tDCS over the left or the right dorsolateral prefrontal cortex (DLPFC) on verbal fluency tasks (VFT) in patients with mild Alzheimer’s disease (AD). Methods: Forty mild AD patients participated in the study (mean age 73.17±5.61 years). All participants underwent cognitive baseline tasks and a VFT twice. Twenty patients randomly received cathodal tDCS to the left or the right DLPFC, and twenty patients were assigned to a control group in which only the two measures of VFT were taken, without the administration of the tDCS. Results: A significant improvement of performance on the VFT in AD patients was present after tDCS over the right DLPFC (p = 0.001). Instead, no difference was detected between the two VFTs sessions after tDCS over the left DLPFC (p = 0.42). Furthermore, these results cannot be related to task learning effects, since no significant difference was found between the two VFT sessions in the control group (p = 0.73). Conclusion: These data suggest that tDCS over DLPFC can improve VFT performance in AD patients. A hypothesis is that tDCS enhances adaptive patterns of brain activity between functionally connected areas.


Sign in / Sign up

Export Citation Format

Share Document