scholarly journals Synaptophysin gene expression in schizophrenia

2000 ◽  
Vol 176 (3) ◽  
pp. 236-242 ◽  
Author(s):  
Sharon L. Eastwood ◽  
Nigel J. Cairns ◽  
Paul J. Harrison

BackgroundDecreased expression of proteins such as synaptophysin in the hippocampus and prefrontal cortex in schizophrenia is suggestive of synaptic pathology. However, the overall profile of changes is unclear.AimsTo investigate synaptophysin gene expression in the cerebral cortex in schizophrenia.MethodThe dorsolateral prefrontal (Brodmann area [BA] 9/46), anterior cingulate (BA 24), superior temporal (BA 22) and occipital (BA 17) cortex were studied in two series of brains, totalling 19 cases and 19 controls. Synaptophysin was measured by immunoautoradiography and immunoblotting. Synaptophysin messenger RNA (m RNA) was measured using in situ hybridisation.ResultsSynaptophysin was unchanged in schizophrenia, except for a reduction in BA 17 of one brain series. Synaptophysin mRNA was decreased in BA 17, and in BA 22 in the women with schizophrenia. No alterations were seen in BA 9/46.ConclusionsSynaptophysin expression is decreased in some cortical areas in schizophrenia. The alterations affect the mRNA more than the protein, and have an unexpected regional distribution. The characteristics of the implied synaptic pathology remain to be determined.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Yoshino ◽  
Bhaskar Roy ◽  
Nilesh Kumar ◽  
M. Shahid Mukhtar ◽  
Yogesh Dwivedi

AbstractDisrupted synaptic plasticity is the hallmark of major depressive disorder (MDD), with accompanying changes at the molecular and cellular levels. Often, the maladaptive molecular changes at the synapse are the result of global transcriptional reprogramming dictated by activity-dependent synaptic modulation. Thus far, no study has directly studied the transcriptome-wide expression changes locally at the synapse in MDD brain. Here, we have examined altered synaptic transcriptomics and their functional relevance in MDD with a focus on the dorsolateral prefrontal cortex (dlPFC). RNA was isolated from total fraction and purified synaptosomes of dlPFC from well-matched 15 non-psychiatric controls and 15 MDD subjects. Transcriptomic changes in synaptic and total fractions were detected by next-generation RNA-sequencing (NGS) and analyzed independently. The ratio of synaptic/total fraction was estimated to evaluate a shift in gene expression ratio in MDD subjects. Bioinformatics and network analyses were used to determine the biological relevance of transcriptomic changes in both total and synaptic fractions based on gene–gene network, gene ontology (GO), and pathway prediction algorithms. A total of 14,005 genes were detected in total fraction. A total of 104 genes were differentially regulated (73 upregulated and 31 downregulated) in MDD group based on 1.3-fold change threshold and p < 0.05 criteria. In synaptosomes, out of 13,236 detectable genes, 234 were upregulated and 60 were downregulated (>1.3-fold, p < 0.05). Several of these altered genes were validated independently by a quantitative polymerase chain reaction (qPCR). GO revealed an association with immune system processes and cell death. Moreover, a cluster of genes belonged to the nervous system development, and psychological disorders were discovered using gene–gene network analysis. The ratio of synaptic/total fraction showed a shift in expression of 119 genes in MDD subjects, which were primarily associated with neuroinflammation, interleukin signaling, and cell death. Our results suggest not only large-scale gene expression changes in synaptosomes, but also a shift in the expression of genes from total to synaptic fractions of dlPFC of MDD subjects with their potential role in immunomodulation and cell death. Our findings provide new insights into the understanding of transcriptomic regulation at the synapse and their possible role in MDD pathogenesis.


2019 ◽  
Vol 30 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Farshad A Mansouri ◽  
Mark J Buckley ◽  
Daniel J Fehring ◽  
Keiji Tanaka

Abstract Imaging and neural activity recording studies have shown activation in the primate prefrontal cortex when shifting attention between visual dimensions is necessary to achieve goals. A fundamental unanswered question is whether representations of these dimensions emerge from top-down attentional processes mediated by prefrontal regions or from bottom-up processes within visual cortical regions. We hypothesized a causative link between prefrontal cortical regions and dimension-based behavior. In large cohorts of humans and macaque monkeys, performing the same attention shifting task, we found that both species successfully shifted between visual dimensions, but both species also showed a significant behavioral advantage/bias to a particular dimension; however, these biases were in opposite directions in humans (bias to color) versus monkeys (bias to shape). Monkeys’ bias remained after selective bilateral lesions within the anterior cingulate cortex (ACC), frontopolar cortex, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), or superior, lateral prefrontal cortex. However, lesions within certain regions (ACC, DLPFC, or OFC) impaired monkeys’ ability to shift between these dimensions. We conclude that goal-directed processing of a particular dimension for the executive control of behavior depends on the integrity of prefrontal cortex; however, representation of competing dimensions and bias toward them does not depend on top-down prefrontal-mediated processes.


2014 ◽  
Vol 111 (4) ◽  
pp. 787-803 ◽  
Author(s):  
Michael J. Koval ◽  
R. Matthew Hutchison ◽  
Stephen G. Lomber ◽  
Stefan Everling

The dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC) have both been implicated in the cognitive control of saccadic eye movements by single neuron recording studies in nonhuman primates and functional imaging studies in humans, but their relative roles remain unclear. Here, we reversibly deactivated either dlPFC or ACC subregions in macaque monkeys while the animals performed randomly interleaved pro- and antisaccades. In addition, we explored the whole-brain functional connectivity of these two regions by applying a seed-based resting-state functional MRI analysis in a separate cohort of monkeys. We found that unilateral dlPFC deactivation had stronger behavioral effects on saccades than unilateral ACC deactivation, and that the dlPFC displayed stronger functional connectivity with frontoparietal areas than the ACC. We suggest that the dlPFC plays a more prominent role in the preparation of pro- and antisaccades than the ACC.


Author(s):  
Kristen R. Maynard ◽  
Leonardo Collado-Torres ◽  
Lukas M. Weber ◽  
Cedric Uytingco ◽  
Brianna K. Barry ◽  
...  

2015 ◽  
Vol 1 (4) ◽  
pp. 220-234 ◽  
Author(s):  
Peter M. Thompson ◽  
Dianne A. Cruz ◽  
Elizabeth A. Fucich ◽  
Dianna Y. Olukotun ◽  
Masami Takahashi ◽  
...  

2017 ◽  
Vol 52 (7) ◽  
pp. 690-698 ◽  
Author(s):  
Yiru Zhang ◽  
Vibeke Sørensen Catts ◽  
Cynthia Shannon Weickert

Objective: The glutathione (GSH) pathway is the main antioxidant system to protect against oxidative stress in the human brain. In this study, we tested whether molecular components of the GSH antioxidant system are changed in dorsolateral prefrontal cortex tissue from people with schizophrenia compared to controls. Method: The levels of total glutathione and reduced GSH were determined by fluorometric assay via quantifying thiols in extracts from frontal cortex of 68 people. Immunoblotting was used to measure levels of enzymes responsible for maintaining GSH, the glutamyl-cysteine ligase (GCL) catalytic subunit (GCLC) and the GSH peroxidase (GPx)-like protein ( n = 74). Quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to measure GCLC messenger RNA (mRNA) expression. Results: Both total glutathione ( t(66) = 2.467, p = 0.016) and reduced GSH ( t(66) = 3.001, p = 0.004) levels were significantly less in people with schizophrenia than in controls. However, there were no significant differences in either GCLC-like protein ( t(72) = −1.077, p = 0.285) or GCLC mRNA expression ( t(71) = −0.376, p = 0.708) between people with schizophrenia and control subjects. There was also no significant difference of GPx-like protein levels between schizophrenia and controls ( t(72) = −0.060, p = 0.952). Moreover, no significant correlations of putative confounding factors with GSH changes were detected. Discussion: These results suggest that people with schizophrenia have impaired GSH antioxidant capacity, alongside normal levels of key regulatory proteins.


Development ◽  
1998 ◽  
Vol 125 (12) ◽  
pp. 2315-2325 ◽  
Author(s):  
E.A. Grove ◽  
S. Tole ◽  
J. Limon ◽  
L. Yip ◽  
C.W. Ragsdale

In the developing vertebrate CNS, members of the Wnt gene family are characteristically expressed at signaling centers that pattern adjacent parts of the neural tube. To identify candidate signaling centers in the telencephalon, we isolated Wnt gene fragments from cDNA derived from embryonic mouse telencephalon. In situ hybridization experiments demonstrate that one of the isolated Wnt genes, Wnt7a, is broadly expressed in the embryonic telencephalon. By contrast, three others, Wnt3a, 5a and a novel mouse Wnt gene, Wnt2b, are expressed only at the medial edge of the telencephalon, defining the hem of the cerebral cortex. The Wnt-rich cortical hem is a transient, neuron-containing, neuroepithelial structure that forms a boundary between the hippocampus and the telencephalic choroid plexus epithelium (CPe) throughout their embryonic development. Indicating a close developmental relationship between the cortical hem and the CPe, Wnt gene expression is upregulated in the cortical hem both before and just as the CPe begins to form, and persists until birth. In addition, although the cortical hem does not show features of differentiated CPe, such as expression of transthyretin mRNA, the CPe and cortical hem are linked by shared expression of members of the Bmp and Msx gene families. In the extra-toesJ (XtJ) mouse mutant, telencephalic CPe fails to develop. We show that Wnt gene expression is deficient at the cortical hem in XtJ/XtJ mice, but that the expression of other telencephalic developmental control genes, including Wnt7a, is maintained. The XtJ mutant carries a deletion in Gli3, a vertebrate homolog of the Drosophila gene cubitus interruptus (ci), which encodes a transcriptional regulator of the Drosophila Wnt gene, wingless. Our observations indicate that Gli3 participates in Wnt gene regulation in the vertebrate telencephalon, and suggest that the loss of telencephalic choroid plexus in XtJ mice is due to defects in the cortical hem that include Wnt gene misregulation.


Sign in / Sign up

Export Citation Format

Share Document