cortical hem
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ana Lopez-Mengual ◽  
Miriam Segura-Feliu ◽  
Raimon Sunyer ◽  
Hector Sanz-Fraile ◽  
Jorge Otero ◽  
...  

Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These pioneer neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the neocortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are also modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.


2021 ◽  
pp. 1-20
Author(s):  
Sara Jiménez ◽  
Nerea Moreno

Cajal-Retzius cells are essential for cortical development in mammals, and their involvement in the evolution of this structure has been widely postulated, but very little is known about their progenitor domains in non-mammalian vertebrates. Using in situhybridization and immunofluorescence techniques we analyzed the expression of some of the main Cajal-Retzius cell markers such as Dbx1, Ebf3, ER81, Lhx1, Lhx5, p73, Reelin, Wnt3a, Zic1, and Zic2 in the forebrain of the anuran Xenopus laevis, because amphibians are the only class of anamniote tetrapods and show a tetrapartite evaginated pallium, but no layered or nuclear organization. Our results suggested that the Cajal-Retzius cell progenitor domains were comparable to those previously described in amniotes. Thus, at dorsomedial telencephalic portions a region comparable to the cortical hem was defined in Xenopus based on the expression of Wnt3a, p73, Reelin, Zic1, and Zic2. In the septum, two different domains were observed: a periventricular dorsal septum, at the limit between the pallium and the subpallium, expressing Reelin, Zic1, and Zic2, and a related septal domain, expressing Ebf3, Zic1, and Zic2. In the lateral telencephalon, the ventral pallium next to the pallio-subpallial boundary, the lack of Dbx1 and the unique expression of Reelin during development defined this territory as the most divergent with respect to mammals. Finally, we also analyzed the expression of these markers at the prethalamic eminence region, suggested as Cajal-Retzius progenitor domain in amniotes, observing there Zic1, Zic2, ER81, and Lhx1 expression. Our data show that in anurans there are different subtypes and progenitor domains of Cajal-Retzius cells, which probably contribute to the cortical regional specification and territory-specific properties. This supports the notion that the basic organization of pallial derivatives in vertebrates follows a comparable fundamental arrangement, even in those that do not have a sophisticated stratified cortical structure like the mammalian cerebral cortex.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alessia Caramello ◽  
Christophe Galichet ◽  
Karine Rizzoti ◽  
Robin Lovell-Badge

During embryonic development, radial glial cells give rise to neurons, then to astrocytes following the gliogenic switch. Timely regulation of the switch, operated by several transcription factors, is fundamental for allowing coordinated interactions between neurons and glia. We deleted the gene for one such factor, SOX9, early during mouse brain development and observed a significantly compromised dentate gyrus (DG). We dissected the origin of the defect, targeting embryonic Sox9 deletion to either the DG neuronal progenitor domain or the adjacent cortical hem (CH). We identified in the latter previously uncharacterized ALDH1L1+ astrocytic progenitors, which form a fimbrial-specific glial scaffold necessary for neuronal progenitor migration towards the developing DG. Our results highlight an early crucial role of SOX9 for DG development through regulation of astroglial potential acquisition in the CH. Moreover, we illustrate how formation of a local network, amidst astrocytic and neuronal progenitors originating from adjacent domains, underlays brain morphogenesis.


2020 ◽  
Author(s):  
Arpan Parichha ◽  
Varun Suresh ◽  
Mallika Chatterjee ◽  
Aditya Kshirsagar ◽  
Lihi Ben-Reuven ◽  
...  

AbstractThe choroid plexus (CP) secretes cerebrospinal fluid and is critical for the development and function of the brain. In the telencephalon, the CP epithelium (CPe) arises from the Wnt- and Bmp- expressing cortical hem. We examined the role of canonical Wnt signaling in CPe development and report that the mouse and human embryonic CPe expresses molecules in this pathway. Either loss of function or constitutive activation of β-catenin, a key mediator of canonical Wnt signaling, causes a profound disruption of mouse CPe development. Loss of β-catenin results in a dysmorphic CPe, while constitutive activation of β-catenin causes a loss of CPe identity and a transformation of this tissue to a hippocampal-like identity. Aspects of this phenomenon are recapitulated in human embryonic stem cell (hESC)-derived organoids. Our results indicate that canonical Wnt signaling is required in a precisely regulated manner for normal CP development in the mammalian brain.


2020 ◽  
Author(s):  
Alessia Caramello ◽  
Christophe Galichet ◽  
Karine Rizzoti ◽  
Robin Lovell-Badge

ABSTRACTDuring embryonic development, radial glial cells give rise to neurons, then to astrocytes following the gliogenic switch. Timely regulation of the switch, operated by several transcription factors, is fundamental for allowing coordinated interactions between neurons and glia. We deleted the gene for one such factor, SOX9, early during mouse brain development and observed a significantly compromised dentate gyrus (DG). We dissected the origin of the defect, targeting embryonic Sox9 deletion to either the DG neuronal progenitor domain or the adjacent cortical hem (CH). We identified in the latter previously uncharacterized ALDH1L1+ astrocytic progenitors, which form a fimbrial-specific glial scaffold necessary for neuronal progenitor migration towards the developing DG. Our results highlight an early crucial role of SOX9 for DG development through regulation of astroglial potential acquisition in the CH. Moreover, we illustrate how formation of a local network, amidst astrocytic and neuronal progenitors originating from adjacent domains, underlays brain morphogenesis.


2020 ◽  
Vol 249 (6) ◽  
pp. 698-710
Author(s):  
Takako Kikkawa ◽  
Nobuyuki Sakayori ◽  
Hayato Yuuki ◽  
Yu Katsuyama ◽  
Fumio Matsuzaki ◽  
...  
Keyword(s):  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Victor V. Chizhikov ◽  
Igor Y. Iskusnykh ◽  
Ekaterina Y. Steshina ◽  
Nikolai Fattakhov ◽  
Anne G. Lindgren ◽  
...  

AbstractThe extent of neocortical gyrification is an important determinant of a species’ cognitive abilities, yet the mechanisms regulating cortical gyrification are poorly understood. We uncover long-range regulation of this process originating at the telencephalic dorsal midline, where levels of secreted Bmps are maintained by factors in both the neuroepithelium and the overlying mesenchyme. In the mouse, the combined loss of transcription factors Lmx1a and Lmx1b, selectively expressed in the midline neuroepithelium and the mesenchyme respectively, causes dorsal midline Bmp signaling to drop at early neural tube stages. This alters the spatial and temporal Wnt signaling profile of the dorsal midline cortical hem, which in turn causes gyrification of the distal neocortex. Our study uncovers early mesenchymal-neuroepithelial interactions that have long-range effects on neocortical gyrification and shows that lissencephaly in mice is actively maintained via redundant genetic regulation of dorsal midline development and signaling.


2019 ◽  
Vol 29 (12) ◽  
pp. 4968-4981 ◽  
Author(s):  
Ailing Du ◽  
Xiaojing Wu ◽  
Hanhan Chen ◽  
Qing-Ran Bai ◽  
Xiao Han ◽  
...  

Abstract During early development, signaling centers, such as the cortical hem and the preoptic area (POA), are critical for telencephalic patterning. However, the mechanisms underlying the maintenance of signal centers are poorly understood. Here, we report that the transcription factor Foxg1 is required to confine the POA, a resource of Sonic Hedgehog (Shh) that is pivotal for ventral telencephalic development. Cell-specific deletion of Foxg1 achieved by crossing Foxg1fl/fl with Dbx1-cre or Nestin-CreER combined with tamoxifen induction results in a dramatic expansion of the POA accompanied by the significantly increased activity of the Shh signaling pathway. Ventral pattern formation was severely impaired. Moreover, we demonstrated that Foxg1 directly represses Dbx1 to restrict the POA. Furthermore, we found that the ventral pallium was expanded, which might also contribute to the observed patterning defects. These findings will improve our understanding of the maintenance of signal centers and help to elucidate the mechanisms underlying ventral telencephalic patterning.


Development ◽  
2019 ◽  
Vol 146 (5) ◽  
pp. dev170068 ◽  
Author(s):  
Santiago P. Fregoso ◽  
Brett E. Dwyer ◽  
Santos J. Franco

2018 ◽  
Author(s):  
Santiago P. Fregoso ◽  
Brett E. Dwyer ◽  
Santos J. Franco

AbstractDuring neocortical development, neurons are produced by a diverse pool of neural progenitors. A subset of progenitors express the Cux2 gene and are fate-restricted to produce certain neuronal subtypes, but the upstream pathways that specify these progenitor fates remain unknown. To uncover the transcriptional networks that regulate Cux2 expression in the forebrain, we characterized a conserved Cux2 enhancer that we find recapitulates Cux2 expression specifically in the cortical hem. Using a bioinformatic approach, we found several potential transcription factor (TF) binding sites for cortical hem-patterning TFs. We found that the homeobox transcription factor, Lmx1a, can activate the Cux2 enhancer in vitro. Furthermore, we show that multiple Lmx1a binding sites required for enhancer activity in the cortical hem in vivo. Mis-expression of Lmx1a in neocortical progenitors caused an increase in Cux2+-lineage cells. Finally, we compared several conserved human enhancers with cortical hem-restricted activity and found that recurrent Lmx1a binding sites are a top shared feature. Uncovering the network of TFs involved in regulating Cux2 expression will increase our understanding of the mechanisms pivotal in establishing Cux2-lineage fates in the developing forebrain.Summary StatementAnalysis of a cortical hem-specific Cux2 enhancer reveals role for Lmx1a as a critical upstream regulator of Cux2 expression patterns in neural progenitors during early forebrain development.


Sign in / Sign up

Export Citation Format

Share Document