Significance of Ground Motion Scaling Parameters on Amplitude of Scale Factors and Seismic Response of Short- and Long-Period Structures

2019 ◽  
Vol 35 (4) ◽  
pp. 1663-1688 ◽  
Author(s):  
Esengul Cavdar ◽  
Gokhan Ozdemir ◽  
Beyhan Bayhan

In this study, an ensemble of ground motions is selected and scaled in order to perform code-compliant bidirectional Nonlinear Response History Analysis for the design purpose of both short- and long-period structures. The followed scaling method provides both the requirements of the Turkish Earthquake Code regarding the scaling of ground motions and compatibility of response spectra of selected ground motion pairs with the target spectrum. The effects of four parameters, involved in the followed scaling method, on both the amplitude of scale factors and seismic response of structures are investigated. These parameters are the number of ground motion records, period range, number of periods used in the related period range, and distribution of weight factors at the selected periods. In the analyses, ground motion excitations were applied to both fixed-base and seismically isolated structure models representative of short- and long-period structures, respectively. Results revealed that both the amplitudes of scale factors and seismic response of short-period structures are more prone to variation of investigated parameters compared to those of long-period structures.

1989 ◽  
Vol 16 (1) ◽  
pp. 22-35 ◽  
Author(s):  
T. J. Zhu ◽  
W. K. Tso ◽  
A. C. Heidebrecht

A statistical analysis is performed to evaluate the base shear provisions in the 1985 edition of the National Building Code of Canada (NBCC 1985). Three sets of real earthquake records are selected to represent seismic ground motions with low, normal, and high peak acceleration to velocity (a/v) ratios. Single degree of freedom stiffness degrading systems are used as structural models; three damage indicators are employed to measure structural damage. The yield strength of the systems is specified in two different ways: (a) a single seismic response factor is used, irrespective of the a/v ratios of the input ground motions; (b) three different seismic response factors are used in the short-period range, depending upon the a/v ratios of the input ground motions, as suggested in NBCC 1985. A comparison of the statistical results of the three damage parameters for the systems designed with these two methods of strength specification indicates that the NBCC 1985 base shear provisions provide consistent control over structural damage when the structural systems are subjected to ground motions with different a/v ratios. Key words: earthquakes, ground motions, response spectra, stiffness degrading systems, seismic design, base shear, yield strength, inelastic response, damage parameters.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


1995 ◽  
Vol 22 (1) ◽  
pp. 190-196
Author(s):  
René Tinawi ◽  
André Filiatrault ◽  
Pierre Léger

An earthquake of magnitude ML = 4.3 occurred near Napierville, Quebec, on November 16, 1993. An accelerograph at the liquefaction, storage, and regasification plant of Gaz Metropolitain in Montreal, about 55 km from the epicentre, recorded the ground motion. Although the maximum accelerations and velocities from this event are small, the acceleration time histories do confirm the high energy content in the very short period range. The recorded ground motion and corresponding absolute acceleration response spectra are presented and various attenuation relationships, proposed for eastern North America, are utilized to compare the measured and predicted ground motion parameters. Key words: Napierville earthquake, attenuation relationships, acceleration spectra, strong motion records.


Author(s):  
J. J. Hu ◽  
H. Zhang ◽  
J. B. Zhu ◽  
G. H. Liu

AbstractA moderate magnitude earthquake with Mw 5.8 occurred on June 17, 2019, in Changning County, Sichuan Province, China, causing 13 deaths, 226 injuries, and serious engineering damage. This earthquake induced heavier damage than earthquakes of similar magnitude. To explain this phenomenon in terms of ground motion characteristics, based on 58 sets of strong ground motions in this earthquake, the peak ground acceleration (PGA), peak ground velocity (PGV), acceleration response spectra (Sa), duration, and Arias intensity are analyzed. The results show that the PGA, PGV, and Sa are larger than the predicted values from some global ground motion models. The between-event residuals reveal that the source effects on the intermediate-period and long-period ground motions are stronger than those on short-period ground motions. Comparison of Arias intensity attenuation with the global models indicates that the energy of ground motions of the Changning earthquake is larger than those of earthquakes with the same magnitude.


2012 ◽  
Vol 204-208 ◽  
pp. 3335-3339
Author(s):  
Jiang Yin ◽  
Xian Yan Zhou ◽  
Guo Jing He

Based on the horizontal and vertical components of a set of 30 acceleration records obtained from 10 near-fault earthquakes, the horizontal and the vertical response spectra are established, and have been compared with each other in this study. Statistical analyses show that, for the selected 30 acceleration records, the maximum mean of vertical acceleration spectra is slightly higher than which of horizontal acceleration spectra. That means the near-fault earthquake really have significant vertical effect. Consulting the domestic and international research achievement, the normalized near-fault design spectrum adapted to Chinese seismic design Code (GB50011-2010) is established in horizontal direction. The results show that, within short period range, the horizontal near-fault design spectrum obtained in this paper is obviously higher than which derived from Chinese seismic code. Subsequently, the spectra of horizontal components for the selected 30 records are each scaled to match the horizontal near-fault design spectrum at two periodic points of 1.0 and 1.5 sec respectively, and the corresponding vertical spectra are scaled with the horizontal spectra at the same time. The scaled results reveal that the vertical spectra have much higher discretion than horizontal spectra, hence the study in this paper could initiates the research interest to a new aspect concerned with the randomness of vertical spectra for near-fault ground motions, which would affect the seismic reliability of structures significantly.


2011 ◽  
Vol 71-78 ◽  
pp. 3841-3844
Author(s):  
Guo Hui Zhao ◽  
Wen Hua Zhang ◽  
Jian Hui Zhao

Long period ground motion has great influence on long period structures such as large oil tank, high-rise building and long span bridge. In this paper, a long span cable-stayed bridge is taken as an example to study the seismic response of long period structure under long period ground motions and conventional ground motions by using nonlinear dynamic time history method. It is shown that although the peak acceleration of the long period ground motions are no more than half of conventional ground motions, the displacement and force response of the bridge at key points under long period ground motions are much greater than that of conventional ground motions. Constraint cables and fluid viscous dampers are used to reduce in the influence of long period ground motion of the bridge, and the effects of the two countermeasures are also analyzed in this paper. The results show that constraint cables have unstable effect and even negative effect under long period ground motion. While fluid viscous dampers have stable effect under both long period ground motion and conventional ground motion with proper damping parameters.


1979 ◽  
Vol 69 (6) ◽  
pp. 1645-1670 ◽  
Author(s):  
Hiroo Kanamori

abstract Predictability of long-period (1 sec or longer) ground motions generated by long strike-slip earthquakes such as the 1906 San Francisco and the 1857 Fort Tejon earthquakes, is investigated. Most large earthquakes are complex multiple events at this period range, and the resulting ground motion may be synthesized by convolving the ground motions of the individual event with the source function that describes the space-time history of the multiple shock sequence. Since it is not possible to predict deterministically the complexity of the rupture propagation, a semi-empirical approach was taken. For the ground motion from the individual events, the displacement records observed for the 1968 Borrego Mountain, California, earthquake were used after correcting for the distance and the radiation pattern. These records which were used as an empirical Green's function for the individual events were superposed, with some randomness, to produce ground motions resulting from a large earthquake. The models were constrained by gross seismological data at three periods. At 1 sec they are constrained by the observed upper bound of the local magnitude (ML = 714), and, at about 10 sec, by the upper bound of the seismic moment of the individual event of multiple shocks (5 × 1026 dyne-cm). At very long periods, the models have the correct total seismic moment. The results obtained for a model of the 1857 earthquake indicate that: (1) the velocity response spectra of ground motions in the near-field are nearly flat at about 50 cm/sec over the period range from 1 to 10 sec under normal conditions; (2) under certain circumstances they can be as large as 150 cm/sec; (3) the maximum duration of the ground motion is 6 min. These results are considered reasonable because they satisfy all the seismological constraints currently available over a wide period range.


Sign in / Sign up

Export Citation Format

Share Document