Pathogenesis and Treatment of Prostate Cancer Bone Metastases: Targeting the Lethal Phenotype

2005 ◽  
Vol 23 (32) ◽  
pp. 8232-8241 ◽  
Author(s):  
Robert D. Loberg ◽  
Christopher J. Logothetis ◽  
Evan T. Keller ◽  
Kenneth J. Pienta

Traditionally, prostate cancer treatment, as well as all cancer treatment, has been designed to target the tumor cell directly via various hormonal and chemotherapeutic agents. Recently, the realization that cancer cells exist in complex microenvironments that are essential for the tumorigenic and metastatic potential of the cancer cells is starting the redefine the paradigm for cancer therapy. The propensity of prostate cancer cells to metastasize to bone is leading to the design of novel therapies targeting both the cancer cell as well as the bone microenvironment. Tumor cells in the bone interact with the extracellular matrix, stromal cells, osteoblasts, osteoclasts, and endothelial cells to promote tumor-cell survival and proliferation leading to a lethal phenotype that includes increased morbidity and mortality for patients with advanced prostate cancer. Several strategies are being developed that target these complex tumor cell–microenvironment interactions and target the signal transduction pathways of other cells important to the development of metastases, including the osteoclasts, osteoblasts, and endothelial cells of the bone microenvironment. Current and new therapies in metastatic prostate cancer will comprise a multitargeted approach aimed at both the tumor cell and the tumor microenvironment. Here, we review the current therapeutic strategies for targeting the prostate cancer–bone microenvironment and several single- and multiagent targeted approaches to the treatment of advanced prostate cancer that are under development.

2007 ◽  
Vol 35 (4) ◽  
pp. 701-703 ◽  
Author(s):  
I. Podgorski ◽  
B.E. Linebaugh ◽  
B.F. Sloane

The skeleton is the most common site of metastasis in patients with advanced prostate cancer. Despite many advances in targeting skeletal metastases, the mechanisms behind the attraction of prostate cancer cells to the bone are not known. Osteoclast cathepsin K, due to its ability to effectively degrade bone matrix collagen I, has been implicated in colonization and growth of prostate tumours in the bone. Identification of new cathepsin K substrates in the bone microenvironment and the recent findings demonstrating its involvement in obesity and inflammation suggest additional roles for this enzyme in skeletal metastases of prostate cancer.


2016 ◽  
Author(s):  
Terese Karlsson ◽  
Reshma Sundar ◽  
Anders Widmark ◽  
Marene Landstrom ◽  
Emma Persson

2016 ◽  
Vol 36 (12) ◽  
pp. 6367-6380 ◽  
Author(s):  
PEI-HSUN TSAI ◽  
CHIA-HSIUNG CHENG ◽  
CHUN-YU LIN ◽  
YING-TANG HUANG ◽  
LUNG-TA LEE ◽  
...  

2019 ◽  
Author(s):  
JIachi Ma ◽  
Shoukai Zhang ◽  
Danru Liang ◽  
Lei Li ◽  
Jun Du ◽  
...  

Abstract Background: To better explore the underlying mechanism of liver metastatic formation by placenta-specific protein 1 (PLAC1) in human colorectal cancer, we investigated the proliferation, invasion and angiogenic capabilities of human colorectal cancer cell lines with different liver metastatic potentials as well as the mechanism of action of PLAC1 in the metastatic process. Methods: The expression of PLAC1 was detected by reverse transcriptase PCR, western blot and real-time PCR. The effect of PLAC1 on metastatic potential was determined by proliferation, invasion, and angiogenesis assays, including an in vitro coculture system consisting of cancer cells and vascular endothelial cells that were used to detect the relationship between cancer cells and angiogenesis. In addition, we also determined PLAC1 downstream targets that preferentially contribute to the metastatic process. Results: PLAC1 was expressed in HT-29, WiDr and CaCo-2 colorectal cancer cells but not in Colo320 colorectal cancer cells. PLAC1 could not only significantly enhance the proliferation of CoLo320 and human umbilical vein endothelial cells (HUVECs) but could also promote the invasion of CoLo320 cells. The angiogenesis of HUVECs was enhanced by PLAC1 in a dose-dependent manner. In cocultured systems, angiogenesis was significantly increased by coculture with HT-29 cells. In addition, PLAC1 could promote angiogenesis in coculture with HT-29 cells. Furthermore, PLAC1-enhanced metastatic potential of colorectal cancer cells was dependent on activation of the PI3K/Akt/NF-κB pathway. Conclusions: The activation of PI3K/Akt/NF-κB signaling by PLAC1 may be critical for the metastasis of colorectal cancer cells. According to our results, we suggest that modification of PLAC1 function might be a promising new therapeutic approach to inhibit the aggressive spread of colorectal cancer.


PLoS ONE ◽  
2010 ◽  
Vol 5 (3) ◽  
pp. e9885 ◽  
Author(s):  
Takanori Tsuji ◽  
Wei Du ◽  
Takashi Nishioka ◽  
Lihua Chen ◽  
Daisuke Yamamoto ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 4 (21) ◽  
pp. 1207-1213 ◽  
Author(s):  
MD Shahjahan Molla ◽  
Dinesh R. Katti ◽  
Kalpana S. Katti

ABSTRACTProstate cancer has a strong preference for metastasizing to bone which is the primary cause of prostate cancer-related morbidity and mortality. The complex nature of cancer metastasis requires the development of translational models that recapitulate a specific metastatic stage. Herein, we report the mimicking of mesenchymal to epithelial transition (MET) of prostate cancer cells using highly metastatic and a non-metastatic prostate cancer cell lines. A unique cell culture technique that we termed as ‘sequential culture’ was used to create a biomimetic bone microenvironment for metastasized prostate cancer cells by introducing bioactive factors from osteogenic induction of human mesenchymal stem cells (MSCs) within the porous 3D scaffolds. The in vitro 3D tumor model can be used as a testbed to study the interaction between prostate cancer and bone microenvironment and for the design of novel therapeutic studies.


Sign in / Sign up

Export Citation Format

Share Document