Cancer epigenetics and effector T cells in immunotherapy and chemotherapy.

2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 17-17
Author(s):  
Weiping Zou

17 Background: The tumor microenvironment is comprised of immune cells that have been reprogrammed by active tumor-mediated processes to defeat tumor-specific immunity and promote tumor growth in a highly effective manner. Previous studies have helped define the nature of immune responses in the tumor microenvironment, and provide new insights into designing novel immune therapies to target the immune suppressive mechanisms including Tregs and inhibitory B7 family members (e.g. PD-L1/PD-1) and treat patients with cancer. However, the mechanisms controlling tumor immune phenotype and biological phenotype, and their relevance in cancer therapy are not well understood. Methods: Using human colon and ovarian cancer as our models, we have studied the cross-talk between immune cell subsets and tumor/stem cells, and between immunogenic and oncogenic pathways in the tumor microenvironment, and its impact on tumor immunity and therapy. Results: In patients with colon and ovarian cancer as our models, we demonstrate that Th22 cells and myeloid derived suppressor cells (MDSCs) regulate tumor stemness via epigenetic mechanisms. Furthermore, we found that histone modification and DNA methylation repress the tumor production of Th1-type chemokines, and subsequently determine effector T cell trafficking to the tumor microenvironment, affect tumor progression, and therapeutic efficacy of checkpoint blockade and adoptive T cell transfusion, chemotherapy and patient outcome. Conclusions: Epigenetic silencing of Th1-type chemokine is a novel tumor immune evasion mechanism. Selective epigenetic reprogramming alters T cell landscape in cancer and may enhance clinical efficacy of cancer therapy.

2018 ◽  
Vol 25 (36) ◽  
pp. 4758-4784 ◽  
Author(s):  
Amy L. Wilson ◽  
Magdalena Plebanski ◽  
Andrew N. Stephens

Cancer is one of the leading causes of death worldwide, and current research has focused on the discovery of novel approaches to effectively treat this disease. Recently, a considerable number of clinical trials have demonstrated the success of immunomodulatory therapies for the treatment of cancer. Monoclonal antibodies can target components of the immune system to either i) agonise co-stimulatory molecules, such as CD137, OX40 and CD40; or ii) inhibit immune checkpoints, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death-1 (PD-1) and its corresponding ligand PD-L1. Although tumour regression is the outcome for some patients following immunotherapy, many patients still do not respond. Furthermore, chemotherapy has been the standard of care for most cancers, but the immunomodulatory capacity of these drugs has only recently been uncovered. The ability of chemotherapy to modulate the immune system through a variety of mechanisms, including immunogenic cell death (ICD), increased antigen presentation and depletion of regulatory immune cells, highlights the potential for synergism between conventional chemotherapy and novel immunotherapy. In addition, recent pre-clinical trials indicate dipeptidyl peptidase (DPP) enzyme inhibition, an enzyme that can regulate immune cell trafficking to the tumour microenvironment, as a novel cancer therapy. The present review focuses on the current immunological approaches for the treatment of cancer, and summarizes clinical trials in the field of immunotherapy as a single treatment and in combination with chemotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2995
Author(s):  
Laia Gorchs ◽  
Helen Kaipe

Less than 10% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) survive 5 years or more, making it one of the most fatal cancers. Accumulation of T cells in pancreatic tumors is associated with better prognosis, but immunotherapies to enhance the anti-tumor activity of infiltrating T cells are failing in this devastating disease. Pancreatic tumors are characterized by a desmoplastic stroma, which mainly consists of activated cancer-associated fibroblasts (CAFs). Pancreatic CAFs have emerged as important regulators of the tumor microenvironment by contributing to immune evasion through the release of chemokines, cytokines, and growth factors, which alters T-cell migration, differentiation and cytotoxic activity. However, recent discoveries have also revealed that subsets of CAFs with diverse functions can either restrain or promote tumor progression. Here, we discuss our current knowledge about the interactions between CAFs and T cells in PDAC and summarize different therapy strategies targeting the CAF–T cell axis with focus on CAF-derived soluble immunosuppressive factors and chemokines. Identifying the functions of different CAF subsets and understanding their roles in T-cell trafficking within the tumor may be fundamental for the development of an effective combinational treatment for PDAC.


2021 ◽  
Author(s):  
Sakthi Rajendran ◽  
Clayton Peterson ◽  
Alessandro Canella ◽  
Yang Hu ◽  
Amy Gross ◽  
...  

Low grade gliomas (LGG) account for about two-thirds of all glioma diagnoses in adolescents and young adults (AYA) and malignant progression of these patients leads to dismal outcomes. Recent studies have shown the importance of the dynamic tumor microenvironment in high-grade gliomas (HGG), yet its role is still poorly understood in low-grade glioma malignant progression. Here, we investigated the heterogeneity of the immune microenvironment using a platelet-derived growth factor (PDGF)-driven RCAS (replication-competent ASLV long terminal repeat with a splice acceptor) glioma model that recapitulates the malignant progression of low to high-grade glioma in humans and also provides a model system to characterize immune cell trafficking and evolution. To illuminate changes in the immune cell landscape during tumor progression, we performed single-cell RNA sequencing on immune cells isolated from animals bearing no tumor (NT), LGG and HGG, with a particular focus on the myeloid cell compartment, which is known to mediate glioma immunosuppression. LGGs demonstrated significantly increased infiltrating T cells, CD4 T cells, CD8 T cells, B cells, and natural killer cells in the tumor microenvironment, whereas HGGs significantly abrogated this infiltration. Our study identified two distinct macrophage clusters in the tumor microenvironment; one cluster appeared to be bone marrow-derived while another was defined by overexpression of Trem2, a marker of tumor associated macrophages. Our data demonstrates that these two distinct macrophage clusters show an immune-activated phenotype (Stat1, Tnf, Cxcl9 and Cxcl10) in LGG which evolves to an immunosuppressive state (Lgals3, Apoc1 and Id2) in HGG that restricts T cell recruitment and activation. We identified CD74 and macrophage migration inhibition factor (MIF) as potential targets for these distinct macrophage populations. Interestingly, these results were mirrored by our analysis of the TCGA dataset, which demonstrated a statistically significant association between CD74 overexpression and decreased overall survival in AYA patients with grade II gliomas. Targeting immunosuppressive myeloid cells and intra-tumoral macrophages within this therapeutic window may ameliorate mechanisms associated with immunosuppression before and during malignant progression.


2014 ◽  
Vol 16 (suppl 5) ◽  
pp. v121-v122
Author(s):  
N. Kamran ◽  
M. Ayala ◽  
Y. Li ◽  
H. Assi ◽  
M. Candolfi ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Katherine J. Carpenter ◽  
Aurore-Cecile Valfort ◽  
Nick Steinauer ◽  
Arindam Chatterjee ◽  
Suomia Abuirqeba ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is a highly aggressive subtype that is untreatable with hormonal or HER2-targeted therapies and is also typically unresponsive to checkpoint-blockade immunotherapy. Within the tumor microenvironment dysregulated immune cell metabolism has emerged as a key mechanism of tumor immune-evasion. We have discovered that the Liver-X-Receptors (LXRα and LXRβ), nuclear receptors known to regulate lipid metabolism and tumor-immune interaction, are highly activated in TNBC tumor associated myeloid cells. We therefore theorized that inhibiting LXR would induce immune-mediated TNBC-tumor clearance. Here we show that pharmacological inhibition of LXR activity induces tumor destruction primarily through stimulation of CD8+ T-cell cytotoxic activity and mitochondrial metabolism. Our results imply that LXR inverse agonists may be a promising new class of TNBC immunotherapies.


2020 ◽  
Vol 6 (20) ◽  
pp. eaaz9240 ◽  
Author(s):  
Zhaoting Li ◽  
Yixin Wang ◽  
Yuexin Shen ◽  
Chenggen Qian ◽  
David Oupicky ◽  
...  

Anti–programmed cell death 1 ligand 1 (PD-L1) therapy is extraordinarily effective in select patients with cancer. However, insufficient lymphocytic infiltration, weak T cell–induced inflammation, and immunosuppressive cell accumulation in the tumor microenvironment (TME) may greatly diminish the efficacy. Here, we report development of the FX@HP nanocomplex composed of fluorinated polymerized CXCR4 antagonism (FX) and paclitaxel-loaded human serum albumin (HP) for pulmonary delivery of anti–PD-L1 small interfering RNA (siPD-L1) to treat orthotopic lung tumors. FX@HP induced T cell infiltration, increased expression of calreticulin on tumor cells, and reduced the myeloid-derived suppressor cells/regulatory T cells in the TME, thereby acting synergistically with siPD-L1 for effective immunotherapy. Our work suggests that the CXCR4-inhibiting nanocomplex decreases tumor fibrosis, facilitates T cell infiltration and relieves immunosuppression to modulate the immune process to improve the objective response rate of anti–PD-L1 immunotherapy.


2004 ◽  
Vol 78 (10) ◽  
pp. 5184-5193 ◽  
Author(s):  
Diana M. Brainard ◽  
William G. Tharp ◽  
Elva Granado ◽  
Nicholas Miller ◽  
Alicja K. Trocha ◽  
...  

ABSTRACT Cell-mediated immunity depends in part on appropriate migration and localization of cytotoxic T lymphocytes (CTL), a process regulated by chemokines and adhesion molecules. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode chemotactically active proteins, suggesting that dysregulation of immune cell trafficking may be a strategy for immune evasion. HIV-1 gp120, a retroviral envelope protein, has been shown to act as a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. We have previously shown that T cells move away from the chemokine stromal cell-derived factor 1 (SDF-1) in a concentration-dependent and CXCR4 receptor-mediated manner. Here, we demonstrate that CXCR4-binding HIV-1 X4 gp120 causes the movement of T cells, including HIV-specific CTL, away from high concentrations of the viral protein. This migratory response is CD4 independent and inhibited by anti-CXCR4 antibodies and pertussis toxin. Additionally, the expression of X4 gp120 by target cells reduces CTL efficacy in an in vitro system designed to account for the effect of cell migration on the ability of CTL to kill their target cells. Recombinant X4 gp120 also significantly reduced antigen-specific T-cell infiltration at a site of antigen challenge in vivo. The repellant activity of HIV-1 gp120 on immune cells in vitro and in vivo was shown to be dependent on the V2 and V3 loops of HIV-1 gp120. These data suggest that the active movement of T cells away from CXCR4-binding HIV-1 gp120, which we previously termed fugetaxis, may provide a novel mechanism by which HIV-1 evades challenge by immune effector cells in vivo.


Sign in / Sign up

Export Citation Format

Share Document