Holomorphic Vector Fields and Differential Equations

Author(s):  
Robert C. Gunning
1991 ◽  
Vol 11 (3) ◽  
pp. 443-454 ◽  
Author(s):  
Morris W. Hirsch

AbstractFor certainCr3-dimensional cooperative or competitive vector fieldsF, whereris any positive integer, it is shown that for any nonwandering pointp, every neighborhood ofFin theCrtopology contains a vector field for whichpis periodic, and which agrees withFoutside a given neighborhood ofp. The proof is based on the existence of invariant planar surfaces throughp.


1974 ◽  
Vol 208 (2) ◽  
pp. 171-173 ◽  
Author(s):  
Czes Kosniowski

Author(s):  
V.Sh. Roitenberg ◽  

In this paper, autonomous differential equations of the second order are considered, the right-hand sides of which are polynomials of degree n with respect to the first derivative with periodic continuously differentiable coefficients, and the corresponding vector fields on the cylindrical phase space. The free term and the leading coefficient of the polynomial is assumed not to vanish, which is equivalent to the absence of singular points of the vector field. Rough equations are considered for which the topological structure of the phase portrait does not change under small perturbations in the class of equations under consideration. It is proved that the equation is rough if and only if all its closed trajectories are hyperbolic. Rough equations form an open and everywhere dense set in the space of the equations under consideration. It is shown that for n > 4 an equation of degree n can have arbitrarily many limit cycles. For n = 4, the possible number of limit cycles is determined in the case when the free term and the leading coefficient of the equation have opposite signs.


Author(s):  
Francisco Braun ◽  
Claudia Valls

Abstract It is known that a polynomial local diffeomorphism $(f,\, g): {\mathbb {R}}^{2} \to {\mathbb {R}}^{2}$ is a global diffeomorphism provided the higher homogeneous terms of $f f_x+g g_x$ and $f f_y+g g_y$ do not have real linear factors in common. Here, we give a weight-homogeneous framework of this result. Our approach uses qualitative theory of differential equations. In our reasoning, we obtain a result on polynomial Hamiltonian vector fields in the plane, generalization of a known fact.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1547
Author(s):  
Stephen C. Anco ◽  
Bao Wang

A geometrical formulation for adjoint-symmetries as one-forms is studied for general partial differential equations (PDEs), which provides a dual counterpart of the geometrical meaning of symmetries as tangent vector fields on the solution space of a PDE. Two applications of this formulation are presented. Additionally, for systems of evolution equations, adjoint-symmetries are shown to have another geometrical formulation given by one-forms that are invariant under the flow generated by the system on the solution space. This result is generalized to systems of evolution equations with spatial constraints, where adjoint-symmetry one-forms are shown to be invariant up to a functional multiplier of a normal one-form associated with the constraint equations. All of the results are applicable to the PDE systems of interest in applied mathematics and mathematical physics.


Sign in / Sign up

Export Citation Format

Share Document