scholarly journals ON POLYNOMIAL DIFFERENTIAL EQUATIONS OF THE SECOND ORDER ON A CIRCLE WITHOUT SINGULAR POINTS

Author(s):  
V.Sh. Roitenberg ◽  

In this paper, autonomous differential equations of the second order are considered, the right-hand sides of which are polynomials of degree n with respect to the first derivative with periodic continuously differentiable coefficients, and the corresponding vector fields on the cylindrical phase space. The free term and the leading coefficient of the polynomial is assumed not to vanish, which is equivalent to the absence of singular points of the vector field. Rough equations are considered for which the topological structure of the phase portrait does not change under small perturbations in the class of equations under consideration. It is proved that the equation is rough if and only if all its closed trajectories are hyperbolic. Rough equations form an open and everywhere dense set in the space of the equations under consideration. It is shown that for n > 4 an equation of degree n can have arbitrarily many limit cycles. For n = 4, the possible number of limit cycles is determined in the case when the free term and the leading coefficient of the equation have opposite signs.

Author(s):  
Адам Дамирович Ушхо

Доказывается, что система дифференциальных уравнений, правые части которой представляют собой полиномы второй степени, не имеет предельных циклов, если в ограниченной части фазовой плоскости она имеет только два состояния равновесия и при этом они являются состояниями равновесия второй группы. It is proved that a system of differential equations, the right-hand sides of which are second-order polynomials, has no limit cycles if it has only two equilibrium states in the bounded part of the phase plane, and they are the equilibrium states of the second group.


2000 ◽  
Vol 24 (3) ◽  
pp. 187-192
Author(s):  
Jie Wang ◽  
Chen Chen

Based on the definition of Lie rotated vector fields in the plane, this paper gives the property of homoclinic orbit as parameter is changed and the singular points are fixed on Lie rotated vector fields. It gives the conditions of yielding limit cycles as well.


2020 ◽  
Vol 16 (4) ◽  
pp. 637-650
Author(s):  
P. Guha ◽  
◽  
S. Garai ◽  
A.G. Choudhury ◽  
◽  
...  

Recently Sinelshchikov et al. [1] formulated a Lax representation for a family of nonautonomous second-order differential equations. In this paper we extend their result and obtain the Lax pair and the associated first integral of a non-autonomous version of the Levinson – Smith equation. In addition, we have obtained Lax pairs and first integrals for several equations of the Painlevé – Gambier list, namely, the autonomous equations numbered XII, XVII, XVIII, XIX, XXI, XXII, XXIII, XXIX, XXXII, XXXVII, XLI, XLIII, as well as the non-autonomous equations Nos. XV and XVI in Ince’s book.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 230
Author(s):  
Juan-Carlos Cortés ◽  
Ana Navarro-Quiles ◽  
José-Vicente Romero ◽  
María-Dolores Roselló

In this contribution, we construct approximations for the density associated with the solution of second-order linear differential equations whose coefficients are analytic stochastic processes about regular-singular points. Our analysis is based on the combination of a random Fröbenius technique together with the random variable transformation technique assuming mild probabilistic conditions on the initial conditions and coefficients. The new results complete the ones recently established by the authors for the same class of stochastic differential equations, but about regular points. In this way, this new contribution allows us to study, for example, the important randomized Bessel differential equation.


2018 ◽  
Vol 28 (14) ◽  
pp. 1850175
Author(s):  
Fangfang Jiang ◽  
Zhicheng Ji ◽  
Yan Wang

In this paper, we investigate the number of limit cycles for two classes of discontinuous Liénard polynomial perturbed differential systems. By the second-order averaging theorem of discontinuous differential equations, we provide several criteria on the lower upper bounds for the maximum number of limit cycles. The results show that the second-order averaging theorem of discontinuous differential equations can predict more limit cycles than the first-order one.


Sign in / Sign up

Export Citation Format

Share Document