Advanced Applications of Spray Drying

2020 ◽  
pp. 73-90
Author(s):  
Nan Fu ◽  
Jie Xiao ◽  
Meng Wai Woo ◽  
Xiao Dong Chen
2021 ◽  
Author(s):  
Ruoyang Liu ◽  
Ke Tian Tan ◽  
Yifan Gong ◽  
Yongzhi Chen ◽  
Zhuoer Li ◽  
...  

Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.


2020 ◽  
Vol 91 (3) ◽  
pp. 31301
Author(s):  
Nabil Chakhchaoui ◽  
Rida Farhan ◽  
Meriem Boutaldat ◽  
Marwane Rouway ◽  
Adil Eddiai ◽  
...  

Novel textiles have received a lot of attention from researchers in the last decade due to some of their unique features. The introduction of intelligent materials into textile structures offers an opportunity to develop multifunctional textiles, such as sensing, reacting, conducting electricity and performing energy conversion operations. In this research work nanocomposite-based highly piezoelectric and electroactive β-phase new textile has been developed using the pad-dry-cure method. The deposition of poly (vinylidene fluoride) (PVDF) − carbon nanofillers (CNF) − tetraethyl orthosilicate (TEOS), Si(OCH2CH3)4 was acquired on a treated textile substrate using coating technique followed by evaporation to transform the passive (non-functional) textile into a dynamic textile with an enhanced piezoelectric β-phase. The aim of the study is the investigation of the impact the coating of textile via piezoelectric nanocomposites based PVDF-CNF (by optimizing piezoelectric crystalline phase). The chemical composition of CT/PVDF-CNC-TEOS textile was detected by qualitative elemental analysis (SEM/EDX). The added of 0.5% of CNF during the process provides material textiles with a piezoelectric β-phase of up to 50% has been measured by FTIR experiments. These results indicated that CNF has high efficiency in transforming the phase α introduced in the unloaded PVDF, to the β-phase in the case of nanocomposites. Consequently, this fabricated new textile exhibits glorious piezoelectric β-phase even with relatively low coating content of PVDF-CNF-TEOS. The study demonstrates that the pad-dry-cure method can potentially be used for the development of piezoelectric nanocomposite-coated wearable new textiles for sensors and energy harvesting applications. We believe that our study may inspire the research area for future advanced applications.


2015 ◽  
Vol 30 (5) ◽  
pp. 487 ◽  
Author(s):  
ZHANG Le ◽  
ZHOU Tian-Yuan ◽  
YANG Hao ◽  
QIAO Xue-Bin ◽  
WANG Zhong-Ying ◽  
...  

Author(s):  
Ewa Domian ◽  
Ewa Świrydow ◽  
Jan Cenkier
Keyword(s):  

Author(s):  
E. L. Baker ◽  
D. Pfau ◽  
J. M. Pincay ◽  
T. Vuong ◽  
K. W. Ng

Author(s):  
Kusuma P. ◽  
Syukri Y ◽  
Sholehuddin F. ◽  
Fazzri N. ◽  
Romdhonah . ◽  
...  

The most efficient tablet processing method is direct compression. For this method, the filler-binder can be made by coprocessing via spray drying method. The purpose of this study was to investigate the effect of spray dried co-processing on microcrystalline cellulose (MCC) PH 101, lactose and Kollidon® K 30 as well as to define the optimum proportions. Spray dried MCC PH 101, lactose, and Kollidon® K 30 were varied in 13 different mixture design proportions to obtain compact, free-flowing filler-binder co-processed excipients (CPE). Compactibility and flow properties became the key parameters to determine the optimum proportions of CPE that would be compared to their physical mixtures. The result showed that the optimum proportion of CPE had better compactibility and flow properties than the physical mixtures. The optimum CPE, consisting of only MCC PH 101 and Kollidon® K 30 without lactose, that were characterized using infrared spectrophotometer, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM) indicated no chemical change therein. Therefore, this study showed that spray dried MCC PH 101, lactose and Kollidon® K 30 could be one of the filler-binder alternatives for direct compression process.


2019 ◽  
Author(s):  
Hatem M. Titi ◽  
Mihails Arhangelskis ◽  
Athanassis Katsenis ◽  
Cristina Mottillo ◽  
Ghada Ayoub ◽  
...  

Systematic investigation of combustion energies for popular metal-organic frameworks (MOFs) reveals energy content comparable to conventional energetic materials and can be further modified and dine-tuned by polymorphism and isostructural ligand replacement to yield materials with energy densities comparable to Diesel or kerosene.<br>


Sign in / Sign up

Export Citation Format

Share Document