Membrane Distillation: An Efficient Technology for Desalination

Author(s):  
Sanjay Remanan ◽  
Narayan Chandra Das
Entropy ◽  
2015 ◽  
Vol 17 (11) ◽  
pp. 7530-7566 ◽  
Author(s):  
David Warsinger ◽  
Karan Mistry ◽  
Kishor Nayar ◽  
Hyung Chung ◽  
John Lienhard

Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF), multiple effect distillation (MED), multistage vacuum membrane distillation (MSVMD), humidification-dehumidification (HDH), and organic Rankine cycles (ORCs) paired with mechanical technologies of reverse osmosis (RO) and mechanical vapor compression (MVC). The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions) had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.


2020 ◽  
Vol 14 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Lynn Y. Wan

Electrospinning is a highly efficient technology for fabrication of a wide variety of polymeric nanofibers. However, the development of traditional needle-based electrospinning has been hampered by its low productivity and need of tedious work dealing with needles cleaning, installation and uninstallation. As one of the most promising needleless electrospinning means, bubble electrospinning is known for its advantages of high productivity and relatively low energy consumption due to the introduction of a third force, air flow, as a major force overcoming the surface tension. In this paper, the restrictions of conventional electrospinning and the advantages of needleless electrospinning, especially the bubble electrospinning were elaborated. Reports and patents on bubble-spun nanofibers with unique surface morphologies were also reviewed in respect of their potential applications.


Membranes ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 15 ◽  
Author(s):  
Mohamed R. Elmarghany ◽  
Ahmed H. El-Shazly ◽  
Saeid Rajabzadeh ◽  
Mohamed S. Salem ◽  
Mahmoud A. Shouman ◽  
...  

In this work, a novel triple-layer nanocomposite membrane prepared with polyethersulfone (PES)/carbon nanotubes (CNTs) as the primary bulk material and poly (vinylidene fluoride-co-hexafluoro propylene) (PcH)/CNTs as the outer and inner surfaces of the membrane by using electrospinning method is introduced. Modified PES with CNTs was chosen as the bulk material of the triple-layer membrane to obtain a high porosity membrane. Both the upper and lower surfaces of the triple-layer membrane were coated with PcH/CNTs using electrospinning to get a triple-layer membrane with high total porosity and noticeable surface hydrophobicity. Combining both characteristics, next to an acceptable bulk hydrophobicity, resulted in a compelling membrane for membrane distillation (MD) applications. The prepared membrane was utilized in a direct contact MD system, and its performance was evaluated in different salt solution concentrations, feed velocities and feed solution temperatures. The results of the prepared membrane in this study were compared to those reported in previously published papers. Based on the evaluated membrane performance, the triple-layer nanocomposite membrane can be considered as a potential alternative with reasonable cost, relative to other MD membranes.


2019 ◽  
Vol 696 ◽  
pp. 133883 ◽  
Author(s):  
Min Tang ◽  
Deyin Hou ◽  
Chunli Ding ◽  
Kunpeng Wang ◽  
Dewu Wang ◽  
...  

Author(s):  
Mukta Hardikar ◽  
Luisa A. Ikner ◽  
Varinia Felix ◽  
Luke K. Presson ◽  
Andrew B. Rabe ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1601
Author(s):  
Jorge Contreras-Martínez ◽  
Carmen García-Payo ◽  
Mohamed Khayet

As a consequence of the increase in reverse osmosis (RO) desalination plants, the number of discarded RO modules for 2020 was estimated to be 14.8 million annually. Currently, these discarded modules are disposed of in nearby landfills generating high volumes of waste. In order to extend their useful life, in this research study, we propose recycling and reusing the internal components of the discarded RO modules, membranes and spacers, in membrane engineering for membrane distillation (MD) technology. After passive cleaning with a sodium hypochlorite aqueous solution, these recycled components were reused as support for polyvinylidene fluoride nanofibrous membranes prepared by electrospinning technique. The prepared membranes were characterized by different techniques and, finally, tested in desalination of high saline solutions (brines) by direct contact membrane distillation (DCMD). The effect of the electrospinning time, which is the same as the thickness of the nanofibrous layer, was studied in order to optimize the permeate flux together with the salt rejection factor and to obtain robust membranes with stable DCMD desalination performance. When the recycled RO membrane or the permeate spacer were used as supports with 60 min electrospinning time, good permeate fluxes were achieved, 43.2 and 18.1 kg m−2 h−1, respectively; with very high salt rejection factors, greater than 99.99%. These results are reasonably competitive compared to other supported and unsupported MD nanofibrous membranes. In contrast, when using the feed spacer as support, inhomogeneous structures were observed on the electrospun nanofibrous layer due to the special characteristics of this spacer resulting in low salt rejection factors and mechanical properties of the electrospun nanofibrous membrane.


Sign in / Sign up

Export Citation Format

Share Document