Lagrangians and Noether's Theorem

2021 ◽  
pp. 225-246
Author(s):  
Manousos Markoutsakis
Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

General introduction with a review of the principles of Hamiltonian and Lagrangian mechanics. The connection between symmetries and conservation laws, with a presentation of Noether’s theorem, is included.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Rakibur Rahman ◽  
Fahima Nowrin ◽  
M. Shahnoor Rahman ◽  
Jonathan A. D. Wattis ◽  
Md. Kamrul Hassan

2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Jun Jiang ◽  
Yuqiang Feng ◽  
Shougui Li

In this paper, the necessary and sufficient conditions of optimality for variational problems with Caputo partial fractional derivative are established. Fractional Euler-Lagrange equations are obtained. The Legendre condition and Noether’s theorem are also presented.


1994 ◽  
Vol 09 (19) ◽  
pp. 1785-1790 ◽  
Author(s):  
O. CASTAÑOS ◽  
R. LÓPEZ-PEÑA ◽  
V.I. MAN’KO

The infinite number of time-dependent linear in field and conjugated momenta invariants is derived for the scalar field using the Noether’s theorem procedure.


Author(s):  
Daniela Manolea

The study is explanatory-interpretative and argues the practical character of Physics. It starts from premise that formation of a correct conception of the world begins with the understanding of physics. It is one of the earliest chapters of human knowledge, studying the material world from the microscopic level of the particles to the macroscopic level of the celestial body. As an example for the practical importance of applying the laws of physics take the set of physical laws of conservation, in particular, it explains the practical impact of Emmy Noether's Theorem.


2008 ◽  
Vol 342 (2) ◽  
pp. 1220-1226 ◽  
Author(s):  
Zbigniew Bartosiewicz ◽  
Delfim F.M. Torres

Sign in / Sign up

Export Citation Format

Share Document