Compactness and sequential compactness

Author(s):  
Nikos Katzourakis ◽  
Eugen Vărvărucă
2006 ◽  
Vol 51 (3) ◽  
pp. 247-262 ◽  
Author(s):  
Anders Holmbom ◽  
Jeanette Silfver ◽  
Nils Svanstedt ◽  
Niklas Wellander

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Huan Huang ◽  
Congxin Wu

We give a new characterization of compact subsets of the fuzzy number space equipped with the level convergence topology. Based on this, it is shown that compactness is equivalent to sequential compactness on the fuzzy number space endowed with the level convergence topology. Our results imply that some previous compactness criteria are wrong. A counterexample also is given to validate this judgment.


1968 ◽  
Vol 5 (1) ◽  
pp. 203-209 ◽  
Author(s):  
V. E. Beneš

In the study of dynamical systems perturbed by noise, it is important to know whether the stochastic process of interest has a stationary distribution. Four necessary and sufficient conditions are formulated for the existence of a finite invariant measure for a Feller process on a σ-compact metric (state) space. These conditions link together stability notions from several fields. The first uses a Lyapunov function reminiscent of Lagrange stability in differential equations; the second depends on Prokhorov's condition for sequential compactness of measures; the third is a recurrence condition on the ergodic averages of the transition operator; and the fourth is analogous to a condition of Ulam and Oxtoby for the nonstochastic case.


1993 ◽  
Vol 50 (1) ◽  
pp. 47-53 ◽  
Author(s):  
I. Juhász ◽  
Z. Szentmiklóssy

2016 ◽  
Vol 24 (3) ◽  
pp. 167-172
Author(s):  
Kazuhisa Nakasho ◽  
Keiko Narita ◽  
Yasunari Shidama

Summary In this article, we mainly formalize in Mizar [2] the equivalence among a few compactness definitions of metric spaces, norm spaces, and the real line. In the first section, we formalized general topological properties of metric spaces. We discussed openness and closedness of subsets in metric spaces in terms of convergence of element sequences. In the second section, we firstly formalize the definition of sequentially compact, and then discuss the equivalence of compactness, countable compactness, sequential compactness, and totally boundedness with completeness in metric spaces. In the third section, we discuss compactness in norm spaces. We formalize the equivalence of compactness and sequential compactness in norm space. In the fourth section, we formalize topological properties of the real line in terms of convergence of real number sequences. In the last section, we formalize the equivalence of compactness and sequential compactness in the real line. These formalizations are based on [20], [5], [17], [14], and [4].


Author(s):  
Shengda Zeng ◽  
Dumitru Motreanu ◽  
Akhtar A. Khan

AbstractWe study a nonlinear evolutionary quasi–variational–hemivariational inequality (in short, (QVHVI)) involving a set-valued pseudo-monotone map. The central idea of our approach consists of introducing a parametric variational problem that defines a variational selection associated with (QVHVI). We prove the solvability of the parametric variational problem by employing a surjectivity theorem for the sum of operators, combined with Minty’s formulation and techniques from the nonsmooth analysis. Then, an existence theorem for (QVHVI) is established by using Kluge’s fixed point theorem for set-valued operators. As an application, an abstract optimal control problem for the (QVHVI) is investigated. We prove the existence of solutions for the optimal control problem and the weak sequential compactness of the solution set via the Weierstrass minimization theorem and the Kuratowski-type continuity properties.


Author(s):  
Gerard Buskes ◽  
Arnoud van Rooij

Sign in / Sign up

Export Citation Format

Share Document