First-Order Nonlinear Equations with Two Independent Variables of General Form

2002 ◽  
Vol 44 (1) ◽  
pp. 83-93
Author(s):  
Peter J. Vassiliou

AbstractWe give an intrinsic construction of a coupled nonlinear system consisting of two first-order partial differential equations in two dependent and two independent variables which is determined by a hyperbolic structure on the complex special linear group regarded as a real Lie groupG. Despite the fact that the system is not Darboux semi-integrable at first order, the construction of a family of solutions depending.upon two arbitrary functions, each of one variable, is reduced to a system of ordinary differential equations on the 1-jets. The ordinary differential equations in question are of Lie type and associated withG.


1898 ◽  
Vol 62 (379-387) ◽  
pp. 283-285

The general feature of most of the methods of integration of any partial differential equation is the construction of an appropriate subsidiary system and the establishment of the proper relations between integrals of this system and the solution of the original equation. Methods, which in this sense may be called complete, are possessed for partial differential equations of the first order in one dependent variable and any number of independent variables; for certain classes of equations of the first order in two independent variables and a number of dependent variables; and for equations of the second (and higher) orders in one dependent and two independent variables.


In this paper, without touching on the question of the existence of integrals of systems of simultaneous partial differential equations, I have given a method by which the problem of finding their complete primitives may he attacked. The cases discussed are two: that of a pair of equations of the first order in two dependent and two independent variables, and that of a single equation of the second order, with one dependent and two independent variables.


Sign in / Sign up

Export Citation Format

Share Document