- Integration and Coregistration of Multisource Lunar Topographic Data Sets for Synergistic Use

2014 ◽  
pp. 112-133
Keyword(s):  
Author(s):  
Harry T. Uitermark ◽  
Peter J.M. van Oosterom ◽  
Nicolaas J.I. Mars ◽  
Martien Molenaar
Keyword(s):  

Geophysics ◽  
2020 ◽  
pp. 1-41 ◽  
Author(s):  
Jens Tronicke ◽  
Niklas Allroggen ◽  
Felix Biermann ◽  
Florian Fanselow ◽  
Julien Guillemoteau ◽  
...  

In near-surface geophysics, ground-based mapping surveys are routinely employed in a variety of applications including those from archaeology, civil engineering, hydrology, and soil science. The resulting geophysical anomaly maps of, for example, magnetic or electrical parameters are usually interpreted to laterally delineate subsurface structures such as those related to the remains of past human activities, subsurface utilities and other installations, hydrological properties, or different soil types. To ease the interpretation of such data sets, we propose a multi-scale processing, analysis, and visualization strategy. Our approach relies on a discrete redundant wavelet transform (RWT) implemented using cubic-spline filters and the à trous algorithm, which allows to efficiently compute a multi-scale decomposition of 2D data using a series of 1D convolutions. The basic idea of the approach is presented using a synthetic test image, while our archaeo-geophysical case study from North-East Germany demonstrates its potential to analyze and process rather typical geophysical anomaly maps including magnetic and topographic data. Our vertical-gradient magnetic data show amplitude variations over several orders of magnitude, complex anomaly patterns at various spatial scales, and typical noise patterns, while our topographic data show a distinct hill structure superimposed by a microtopographic stripe pattern and random noise. Our results demonstrate that the RWT approach is capable to successfully separate these components and that selected wavelet planes can be scaled and combined so that the reconstructed images allow for a detailed, multi-scale structural interpretation also using integrated visualizations of magnetic and topographic data. Because our analysis approach is straightforward to implement without laborious parameter testing and tuning, computationally efficient, and easily adaptable to other geophysical data sets, we believe that it can help to rapidly analyze and interpret different geophysical mapping data collected to address a variety of near-surface applications from engineering practice and research.


1989 ◽  
Vol 131 (1-2) ◽  
pp. 241-254 ◽  
Author(s):  
Lewis E. Gilbert
Keyword(s):  

Fractals ◽  
1994 ◽  
Vol 02 (03) ◽  
pp. 437-440 ◽  
Author(s):  
WILLIAM A. JOHNSEN ◽  
CHRISTOPHER A. BROWN

The objective of this work is to compare fractal-based, topographic characterization parameters calculated by several different fractal analysis methods. Four fractal characterization methods (compass, patchwork, box counting, and 2-point correlation) are systematically applied to five topographic data sets, which encompass a wide range of scale, and the results are compared. The compass and patchwork methods calculate similar values for the fractal dimension and smooth/rough crossover. The box and 2-point correlation methods calculate similar values for the fractal dimension. The compass and patchwork methods are capable of calculating the smooth/rough crossover.


Geosphere ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 392-406 ◽  
Author(s):  
Wenjun Kang ◽  
Xiwei Xu ◽  
Michael E. Oskin ◽  
Guihua Yu ◽  
Jiahong Luo ◽  
...  

Abstract The seismic cycle model is roughly constrained by limited offset data sets from the eastern Altyn Tagh fault with a low slip rate. The recent availability of high-resolution topographic data from the eastern Altyn Tagh fault provides an opportunity to obtain distinctly improved quantitative, dense measurements of fault offsets. In this paper, we used airborne light detection and ranging data and unmanned aircraft vehicle photogrammetry to evaluate fault offsets. To better constrain the large earthquake recurrence model, we acquired dense data sets of fault displacements using the LaDiCaoz_v2.1 software. A total of 321 offset measurements below 30 m highlight two new observations: (1) surface-slip of the most recent earthquake and multiple events exhibit both short-wavelength (m-scale) and long-wavelength (km-scale) variability; and (2) synthesis of offset frequency analysis and coefficient of variation indicate regular slip events with ∼6 m slip increment on fault segments to the west of the Shulehe triple junction. The distribution of offsets and paleoseismological data reveal that the eastern Altyn Tagh fault exhibits characteristic slip behavior, with the characteristic slip of ∼6 m and a recurrence period ranging from 1170 to 3790 years. Paleoearthquake recurrence intervals and slip increments yield mean horizontal slip-rate estimates of 2.1–2.6 mm/yr for fault segments to the west of the Shulehe triple junction. Assuming a 10 km rupture depth and a 30 GPa shear modulus, we estimated a characteristic slip event moment magnitude (Mw) of ∼7.6. Finally, we discuss the interaction mechanism between Altyn Tagh fault (strike fault) and the NW-trending thrust faults (reverse faults) that caused the sudden decrease of sinistral slip rate at the Shulehe and Subei triple junctions; our results support the eastward “lateral slip extrusion” model.


2012 ◽  
Vol 78 (9) ◽  
pp. 959-972 ◽  
Author(s):  
Petra Helmholz ◽  
Christian Becker ◽  
Uwe Breitkopf ◽  
Torsten Büschenfeld ◽  
Andreas Busch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document