altyn tagh
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 87)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
pp. 105082
Author(s):  
Feipeng Huang ◽  
Mingjian Liang ◽  
Huiping Zhang ◽  
Jianguo Xiong ◽  
Yizhou Wang ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Gan Chen ◽  
Wenjun Zheng ◽  
Jingjun Yang ◽  
Lei Duan ◽  
Shumin Liang ◽  
...  

The Dongbatu Shan (DBTS, also known as the Nanjie Shan), which interrupts the northern Tibetan foreland in the Dunhuang basin, is an active anticline. It has accommodated the northwestern growth of the eastern Altyn Tagh fault system (ATF). Although several thrust faults have been identified around the DBTS, their evolution history and influence on regional landscape have received little attention during the late-Quaternary. In this study, several geomorphic methods are used to investigate the interaction between drainage development and tectonic movement around DBTS. Based on high-resolution satellite images, field investigation, and cosmogenic nuclide 10Be dating method, the fluvial landform sequences around DBTS were constructed. Using quantitative geomorphology methods including landscape relief profile, asymmetry factor (AF), and transverse topographic symmetry factor (T), we hypothesize that drainage deflection is controlled by multi-segment fault growth. Combining the results of the above-mentioned methods, we propose that Yulin He, flowing across the DBTS, had gone through several abandonments since the late mid-Pleistocene due to the lateral propagation of DBTS. Affected by the discharge of channel and multi-segment fault growth, our research confirms that the direction of river abandonment may have decoupled with the mountain range propagation trend. Based on the chronology dating, the DBTS has gone through two severe uplifts since ∼208 ka and the shortening rate across the central DBTS is constrained to be ∼1.47 mm/yr since ∼83 ka. Given the fact that thrust faults are widely developed around DBTS, we propose that the flower-like structure formed by the northward growth of the eastern ATF could better explain the development of the secondary subparallel faults.


2021 ◽  
pp. 229142
Author(s):  
Bingshuai Li ◽  
Maodu Yan ◽  
Weilin Zhang ◽  
Xiaomin Fang ◽  
Yongpeng Yang ◽  
...  

2021 ◽  
pp. 104515
Author(s):  
Yongbao Gao ◽  
Xinmin Zhao ◽  
Leon Bagas ◽  
Yalei Wang ◽  
Moushun Jin ◽  
...  
Keyword(s):  
Nw China ◽  

2021 ◽  
Vol 13 (16) ◽  
pp. 3109
Author(s):  
Peng Chen ◽  
Bing Yan ◽  
Yuan Liu

Systematic deflection of drainage systems along strike-slip faults is the combination of repeated faulting slipping and continuous headward erosion accumulated on the stream channels. The measurement and analysis of systematically deflected stream channels will enhance our understanding on the deformational behaviors of strike-slip faults and the relationship between topographic response and active strike-slip faulting. In this study, detailed interpretation and analysis of remote sensing images and DEM data were carried out along the Altyn Tagh Fault, one typical large-scale strike-slip fault in the northern Tibetan Plateau, and together with the statistical results of offset amounts of 153 stream channels, revealed that (i) the drainage systems have been systematically deflected and/or offset in sinistral along the active Altyn Tagh Fault; (ii) The offset amounts recorded by stream channels vary in the range of 7 m to 72 km, and indicate a positively related linear relationship between the upstream length L and the offset amount D, the channel with bedrock upstream generally has a better correlation between L and D than that of non-bedrock upstream; (iii) River capture and abandonment are commonly developed along the Altyn Tagh Fault, which probably disturbed the continuous accumulation of offset recorded on individual stream channel, suggesting that the real maximum cumulative displacement recorded by stream channels might be larger than 72 km (lower bound) along the Altyn Tagh Fault. Along with the cumulative displacements recorded by other regional-scale strike-slip faults in the Tibetan Plateau, these results demonstrate that the magnitude of tectonic extrusion along these first-order strike-slip faults after the collision of India–Asia plates might be limited.


2021 ◽  
pp. 228991
Author(s):  
Bingshuai Li ◽  
Maodu Yan ◽  
Weilin Zhang ◽  
Xiaomin Fang

2021 ◽  
Author(s):  
Yongsheng Gai ◽  
Liang Liu ◽  
Guowei Zhang ◽  
Chao Wang ◽  
Xiaoying Liao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document