scholarly journals Classical and Membrane-Initiated Estrogen Signaling in an In Vitro Model of Anterior Hypothalamic Kisspeptin Neurons

Endocrinology ◽  
2015 ◽  
Vol 156 (6) ◽  
pp. 2162-2173 ◽  
Author(s):  
Melinda A. Mittelman-Smith ◽  
Angela M. Wong ◽  
Anupama S. Q. Kathiresan ◽  
Paul E. Micevych

Abstract The neuropeptide kisspeptin is essential for sexual maturation and reproductive function. In particular, kisspeptin-expressing neurons in the anterior rostral periventricular area of the third ventricle are generally recognized as mediators of estrogen positive feedback for the surge release of LH, which stimulates ovulation. Estradiol induces kisspeptin expression in the neurons of the rostral periventricular area of the third ventricle but suppresses kisspeptin expression in neurons of the arcuate nucleus that regulate estrogen-negative feedback. To focus on the intracellular signaling and response to estradiol underlying positive feedback, we used mHypoA51 cells, an immortalized line of kisspeptin neurons derived from adult female mouse hypothalamus. mHypoA51 neurons express estrogen receptor (ER)-α, classical progesterone receptor (PR), and kisspeptin, all key elements of estrogen-positive feedback. As with kisspeptin neurons in vivo, 17β-estradiol (E2) induced kisspeptin and PR in mHypoA51s. The ERα agonist, 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, produced similar increases in expression, indicating that these events were mediated by ERα. However, E2-induced PR up-regulation required an intracellular ER, whereas kisspeptin expression was stimulated through a membrane ER activated by E2 coupled to BSA. These data suggest that anterior hypothalamic kisspeptin neurons integrate both membrane-initiated and classical nuclear estrogen signaling to up-regulate kisspeptin and PR, which are essential for the LH surge.

2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


Oncogene ◽  
2021 ◽  
Author(s):  
Senlin Zhao ◽  
Bingjie Guan ◽  
Yushuai Mi ◽  
Debing Shi ◽  
Ping Wei ◽  
...  

AbstractGlycolysis plays a crucial role in reprogramming the metastatic tumor microenvironment. A series of lncRNAs have been identified to function as oncogenic molecules by regulating glycolysis. However, the roles of glycolysis-related lncRNAs in regulating colorectal cancer liver metastasis (CRLM) remain poorly understood. In the present study, the expression of the glycolysis-related lncRNA MIR17HG gradually increased from adjacent normal to CRC to the paired liver metastatic tissues, and high MIR17HG expression predicted poor survival, especially in patients with liver metastasis. Functionally, MIR17HG promoted glycolysis in CRC cells and enhanced their invasion and liver metastasis in vitro and in vivo. Mechanistically, MIR17HG functioned as a ceRNA to regulate HK1 expression by sponging miR-138-5p, resulting in glycolysis in CRC cells and leading to their invasion and liver metastasis. More interestingly, lactate accumulated via glycolysis activated the p38/Elk-1 signaling pathway to promote the transcriptional expression of MIR17HG in CRC cells, forming a positive feedback loop, which eventually resulted in persistent glycolysis and the invasion and liver metastasis of CRC cells. In conclusion, the present study indicates that the lactate-responsive lncRNA MIR17HG, acting as a ceRNA, promotes CRLM through a glycolysis-mediated positive feedback circuit and might be a novel biomarker and therapeutic target for CRLM.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1020
Author(s):  
Burak Ibrahim Arioz ◽  
Emre Tarakcioglu ◽  
Melis Olcum ◽  
Sermin Genc

NLRP3 inflammasome is a part of the innate immune system and responsible for the rapid identification and eradication of pathogenic microbes, metabolic stress products, reactive oxygen species, and other exogenous agents. NLRP3 inflammasome is overactivated in several neurodegenerative, cardiac, pulmonary, and metabolic diseases. Therefore, suppression of inflammasome activation is of utmost clinical importance. Melatonin is a ubiquitous hormone mainly produced in the pineal gland with circadian rhythm regulatory, antioxidant, and immunomodulatory functions. Melatonin is a natural product and safer than most chemicals to use for medicinal purposes. Many in vitro and in vivo studies have proved that melatonin alleviates NLRP3 inflammasome activity via various intracellular signaling pathways. In this review, the effect of melatonin on the NLRP3 inflammasome in the context of diseases will be discussed.


Author(s):  
Gleb Nikolaevich Zyuz’kov ◽  
Larisa Arkad`evna Miroshnichenko ◽  
Elena Vladislavovna Simanina ◽  
Larisa Alexandrovna Stavrova ◽  
Tatyana Yur`evna Polykova

Abstract Objectives The development of approaches to the treatment of neurodegenerative diseases caused by alcohol abuse by targeted pharmacological regulation of intracellular signaling transduction of progenitor cells of nerve tissue is promising. We studied peculiarities of participation of NF-кB-, сАМР/РКА-, JAKs/STAT3-, ERK1/2-, p38-pathways in the regulation of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in the simulation of ethanol-induced neurodegeneration in vitro and in vivo. Methods In vitro, the role of signaling molecules (NF-кB, сАМР, РКА, JAKs, STAT3, ERK1/2, p38) in realizing the growth potential of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in ethanol-induced neurodegeneration modeled in vitro and in vivo was studied. To do this, the method of the pharmacological blockade with the use of selective inhibitors of individual signaling molecules was used. Results Several of fundamental differences in the role of certain intracellular signaling molecules (SM) in proliferation and specialization of NSC and NCP have been revealed. It has been shown that the effect of ethanol on progenitors is accompanied by the formation of a qualitatively new pattern of signaling pathways. Data have been obtained on the possibility of stimulation of nerve tissue regeneration in ethanol-induced neurodegeneration by NF-кB and STAT3 inhibitors. It has been found that the blockage of these SM stimulates NSC and NCP in conditions of ethanol intoxication and does not have a «negative» effect on the realization of the growth potential of intact progenitors (which will appear de novo during therapy). Conclusions The results may serve as a basis for the development of fundamentally new drugs to the treatment of alcoholic encephalopathy and other diseases of the central nervous system associated with alcohol abuse.


Author(s):  
Jin-Chun Qi ◽  
Zhan Yang ◽  
Tao Lin ◽  
Long Ma ◽  
Ya-Xuan Wang ◽  
...  

Abstract Background Both E2F transcription factor and cyclin-dependent kinases (CDKs), which increase or decrease E2F activity by phosphorylating E2F or its partner, are involved in the control of cell proliferation, and some circRNAs and miRNAs regulate the expression of E2F and CDKs. However, little is known about whether dysregulation among E2Fs, CDKs, circRNAs and miRNAs occurs in human PCa. Methods The expression levels of CDK13 in PCa tissues and different cell lines were determined by quantitative real-time PCR and Western blot analysis. In vitro and in vivo assays were preformed to explore the biological effects of CDK13 in PCa cells. Co-immunoprecipitation anlysis coupled with mass spectrometry was used to identify E2F5 interaction with CDK13. A CRISPR-Cas9 complex was used to activate endogenous CDK13 and circCDK13 expression. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. Results Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, respectively, cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. Conclusions These findings suggest that CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 547
Author(s):  
Marina Ramal-Sanchez ◽  
Antonella Fontana ◽  
Luca Valbonetti ◽  
Alessandra Ordinelli ◽  
Nicola Bernabò ◽  
...  

Since its discovery, graphene and its multiple derivatives have been extensively used in many fields and with different applications, even in biomedicine. Numerous efforts have been made to elucidate the potential toxicity derived from their use, giving rise to an adequate number of publications with varied results. On this basis, the study of the reproductive function constitutes a good tool to evaluate not only the toxic effects derived from the use of these materials directly on the individual, but also the potential toxicity passed on to the offspring. By providing a detailed scientometric analysis, the present review provides an updated overview gathering all the research studies focused on the use of graphene and graphene-based materials in the reproductive field, highlighting the consequences and effects reported to date from experiments performed in vivo and in vitro and in different animal species (from Archea to mammals). Special attention is given to the oxidized form of graphene, graphene oxide, which has been recently investigated for its ability to increase the in vitro fertilization outcomes. Thus, the potential use of graphene oxide against infertility is hypothesized here, probably by engineering the spermatozoa and thus manipulating them in a safer and more efficient way.


2002 ◽  
Vol 74 (1) ◽  
pp. 3-12 ◽  
Author(s):  
M.L. Boerjan ◽  
S. Freijnagel ◽  
S.M. Rhind ◽  
G.A.L. Meijer

AbstractChemical compounds that mimic or block some of the actions of the steroid hormone oestradiol, have created public concern primarily because of potential adverse reproductive effects in wildlife and humans. Many studies, in vivo and in vitro, have revealed abnormal reproductive function following exposure to these compounds. The number of chemicals known to have the potential to modulate endocrine functions is increasing. In contrast to humans and wildlife, the potential reproductive effects of exposure of domestic animals to endocrine disrupting compounds (EDC) have been studied little. The aim of this overview is to evaluate the possible contribution of EDC to reproductive failure in domestic ruminants.Sources and classes of EDC are discussed as well as their structure and the modes of hormone disruption. Endocrine disrupting agents may interfere with the reproductive processes of both males and females at several points of the reproductive cycle and through a range of physiological mechanisms. Extrapolating from the results obtained with laboratory animals, the mechanisms whereby infertility in domestic ruminants might be expressed by exposure to EDC through contaminated food and drinking water are addressed.A preliminary risk assessment is included and it is concluded that under certain circumstances there may be a significantly enhanced intake of oestrogenic hormones and EDC through sewage-contaminated water or soil-contaminated herbage. The physiological consequences for domestic ruminants of EDC ingestion, at the rates estimated, are largely unknown. However, the levels of exposure to oestrogenic hormones and phthalates in grazing ruminants are such that when studying fertility problems in high-yielding dairy cattle the impacts of exposure to endocrine disruptors via the food and drinking water cannot be neglected.


2015 ◽  
Vol 61 (1) ◽  
pp. 19-29 ◽  
Author(s):  
A.O. Shpakov ◽  
E.A. Shpakova

The regulation of signaling pathways involved in the control of many physiological functions is carried out via the heterotrimeric G protein-coupled receptors (GPCR). The search of effective and selective regulators of GPCR and intracellular signaling cascades coupled with them is one of the important problems of modern fundamental and clinical medicine. Recently data suggest that synthetic peptides and their derivatives, structurally corresponding to the intracellular and transmembrane regions of GPCR, can interact with high efficiency and selectivity with homologous receptors and influence, thus, the functional activity of intracellular signaling cascades and fundamental cellular processes controlled by them. GPCR-peptides are active in both in vitro and in vivo. They regulate hematopoiesis, angiogenesis and cell proliferation, inhibit tumor growth and metastasis, and prevent the inflammatory diseases and septic shock. These data show greatest prospects in the development of the new generations of drugs based on GPCR-derived peptides, capable of regulating the important functions of the organism.


Sign in / Sign up

Export Citation Format

Share Document