Stem cells and organs-on-chips: new promising technologies for human infertility treatment

2021 ◽  
Author(s):  
Eisa Tahmasbpour Marzouni ◽  
Andrew Henrik Sinclair ◽  
Catharyn Stern ◽  
Elena Jane Tucker

Abstract Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But, how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome prior to clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSCs-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide future prospects for improving fertility to individuals and couples who experience reproductive failure.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Laís Vicari de Figueiredo Pessôa ◽  
Pedro Ratto Lisboa Pires ◽  
Maite del Collado ◽  
Naira Caroline Godoy Pieri ◽  
Kaiana Recchia ◽  
...  

Introduction. Pluripotent stem cells are believed to have greater clinical potential than mesenchymal stem cells due to their ability to differentiate into almost any cell type of an organism, and since 2006, the generation of patient-specific induced pluripotent stem cells (iPSCs) has become possible in multiple species. Objectives. We hypothesize that different cell types respond differently to the reprogramming process; thus, the goals of this study were to isolate and characterize equine adult and fetal cells and induce these cells to pluripotency for future regenerative and translational purposes. Methods. Adult equine fibroblasts (eFibros) and mesenchymal cells derived from the bone marrow (eBMmsc), adipose tissue (eADmsc), and umbilical cord tissue (eUCmsc) were isolated, their multipotency was characterized, and the cells were induced in vitro into pluripotency (eiPSCs). eiPSCs were generated through a lentiviral system using the factors OCT4, SOX2, c-MYC, and KLF4. The morphology and in vitro pluripotency maintenance potential (alkaline phosphatase detection, embryoid body formation, in vitro spontaneous differentiation, and expression of pluripotency markers) of the eiPSCs were characterized. Additionally, a miRNA profile analysis of the mesenchymal and eiPSCs was performed. Results. Multipotent cells were successfully isolated, but the eBMmsc failed to generate eiPSCs. The eADmsc-, eUCmsc-, and eFibros-derived iPSCs were positive for alkaline phosphatase, OCT4 and NANOG, were exclusively dependent on bFGF, and formed embryoid bodies. The miRNA profile revealed a segregated pattern between the eiPSCs and multipotent controls: the levels of miR-302/367 and the miR-92 family were increased in the eiPSCs, while the levels of miR-23, miR-27, and miR-30, as well as the let-7 family were increased in the nonpluripotent cells. Conclusions. We were able to generate bFGF-dependent iPSCs from eADmsc, eUCmsc, and eFibros with human OSKM, and the miRNA profile revealed that clonal lines may respond differently to the reprogramming process.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Young Sun Hwang ◽  
Shinnosuke Suzuki ◽  
Yasunari Seita ◽  
Jumpei Ito ◽  
Yuka Sakata ◽  
...  

Abstract Establishment of spermatogonia throughout the fetal and postnatal period is essential for production of spermatozoa and male fertility. Here, we establish a protocol for in vitro reconstitution of human prospermatogonial specification whereby human primordial germ cell (PGC)-like cells differentiated from human induced pluripotent stem cells are further induced into M-prospermatogonia-like cells and T1 prospermatogonia-like cells (T1LCs) using long-term cultured xenogeneic reconstituted testes. Single cell RNA-sequencing is used to delineate the lineage trajectory leading to T1LCs, which closely resemble human T1-prospermatogonia in vivo and exhibit gene expression related to spermatogenesis and diminished proliferation, a hallmark of quiescent T1 prospermatogonia. Notably, this system enables us to visualize the dynamic and stage-specific regulation of transposable elements during human prospermatogonial specification. Together, our findings pave the way for understanding and reconstructing human male germline development in vitro.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Audrey Chabrat ◽  
Emmanuelle Lacassagne ◽  
Rodolphe Billiras ◽  
Sophie Landron ◽  
Amélie Pontisso-Mahout ◽  
...  

The discovery of novel drugs for neurodegenerative diseases has been a real challenge over the last decades. The development of patient- and/or disease-specific in vitro models represents a powerful strategy for the development and validation of lead candidates in preclinical settings. The implementation of a reliable platform modeling dopaminergic neurons will be an asset in the study of dopamine-associated pathologies such as Parkinson’s disease. Disease models based on cell reprogramming strategies, using either human-induced pluripotent stem cells or transcription factor-mediated transdifferentiation, are among the most investigated strategies. However, multipotent adult stem cells remain of high interest to devise direct conversion protocols and establish in vitro models that could bypass certain limitations associated with reprogramming strategies. Here, we report the development of a six-step chemically defined protocol that drives the transdifferentiation of human nasal olfactory stem cells into dopaminergic neurons. Morphological changes were progressively accompanied by modifications matching transcript and protein dopaminergic signatures such as LIM homeobox transcription factor 1 alpha (LMX1A), LMX1B, and tyrosine hydroxylase (TH) expression, within 42 days of differentiation. Phenotypic changes were confirmed by the production of dopamine from differentiated neurons. This new strategy paves the way to develop more disease-relevant models by establishing reprogramming-free patient-specific dopaminergic cell models for drug screening and/or target validation for neurodegenerative diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ji-Yon Kim ◽  
So-Youn Woo ◽  
Young Bin Hong ◽  
Heesun Choi ◽  
Jisoo Kim ◽  
...  

The Charcot-Marie-Tooth disease 2F (CMT2F) and distal hereditary motor neuropathy 2B (dHMN2B) are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1) gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs) of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 703-703
Author(s):  
Naoya Takayama ◽  
Shinji Hirata ◽  
Ryoko Jono-Ohnishi ◽  
Sou Nakamura ◽  
Sho-ichi Hirose ◽  
...  

Abstract Abstract 703 Patient-specific, induced pluripotent stem cells (iPSCs) enable us to study disease mechanisms and drug screening. To clarify the phenotypic alterations caused by the loss of c-MPL, the thrombopoietin (TPO) receptor, we established iPSCs derived from skin fibroblasts of a patient who received curative bone marrow transplantation for congenital amegakarycytic thrombocytopenia (CAMT) caused by the loss of the TPO receptor gene, MPL. The resultant CAMT-iPSCs exhibited mutations corresponding to the original donor skin. Then using an in vitro culture system yielding hematopoietic progenitor cells (HPCs), we evaluated the role of MPL on the early and late phases of human hematopoiesis. Although CAMT-iPSCs generated CD34+ HPCs, per se, their colony formation capability was impaired, as compared to control CD34+ HPCs. Intriguingly, both Glycophorin A (GPA)+ erythrocyte development and CD41+ megakaryocyte yields from CAMT-iPSCs were also impaired, suggesting that MPL is indispensable for MEP (megakaryocyte erythrocyte progenitors) development. Prospective analysis along with the hematopoietic hierarchy revealed that, in CAMT-iPSCs but not control iPSCs expressing MPL, mRNA expression and phosphorylation of putative signaling molecules downstream of MPL are severely impaired, as is the transition from CD34+CD43+CD41-GPA- MPP (multipotent progenitors) to CD41+GPA+ MEP. Additional analysis also indicated that c-MPL is required for maintenance of a consistent supply of megakaryocytes and erythrocytes from MEPs. Conversely, complimentary transduction of MPL into CAMT-iPSCs using a retroviral vector restored the defective erythropoiesis and megakaryopoiesis; however, excessive MPL signaling appears to promote aberrant megakaryopoiesis with CD42b (GPIba)-null platelet generation and impaired erythrocyte production. Taken together, our findings demonstrate the usefulness of CAMT-iPSCs for validation of functionality in the human hematopoiesis system. For example, it appears that MPL is not indispensable for the emergence of HPCs, but is indispensible for their maintenance, and for subsequent MEP development. Our results also strongly indicate that an appropriate expression level of an administered gene is necessary to achieve curative gene correction / therapy using patient-derived iPSCs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2500-2500
Author(s):  
Tellechea Maria Florencia ◽  
Flavia S. Donaires ◽  
Tiago C. Silva ◽  
Lilian F. Moreira ◽  
Yordanka Armenteros ◽  
...  

Aplastic anemia (AA) is characterized by a hypoplastic bone marrow associated with low peripheral blood counts. In acquired cases, the immune system promotes hematopoietic stem and progenitor cell (HSPC) depletion by the action of several pro-inflammatory Th1 cytokines. The current treatment options for severe cases consist of sibling-matched allogeneic hematopoietic stem cell transplantation (HSCT) and immunosuppressive therapy (IST) with anti-thymocyte globulin, cyclosporine, and eltrombopag. However, most patients are not eligible for HSCT and, although about 85% of patients respond to IST with eltrombopag, a proportion of patients eventually relapse, requiring further therapies. Failure to respond adequately to immunosuppression may be attributed to the scarcity of HSPCs at the time of diagnosis. Induced pluripotent stem cells (iPSCs) are potentially an alternative source of patient-specific hematopoietic cells. Patient-specific HSPCs derived from in vitro iPSC differentiation may serve as a tool to study the disease as well as a source of hematopoietic tissue for cell therapies. The pyrimidoindole molecule UM171 induces ex vivo expansion of HSCs of human cord and peripheral blood and bone marrow, but the pathways modulated by this molecule are not well understood. Here we evaluated the hematopoietic differentiation potential of iPSCs obtained from patients with acquired AA. We further determined the effects of UM171 on this differentiation process. First, we derived iPSCs from 3 patients with acquired AA after treatment (1 female; average age, 31 years; 2 partial responders, 1 complete responder) and 3 healthy subjects (3 females; average age, 61 years) and induced differentiation in vitro through the embryoid body system in cell feeder and serum-free medium supplemented with cytokines. The hematopoietic differentiation of healthy-iPSCs yielded 19% ± 8.1% (mean ± SEM) of CD34+cells after 16 days in culture, in contrast with 11% ± 4.9% of CD34+cells obtained from the differentiation of AA-iPSCs, which corresponds to a 1.7-fold reduction in CD34+cell yield. The total number of erythroid and myeloid CFUs was lower in the AA-iPSC group as compared to healthy-iPSCs (12±4.2 vs.24±7.2; respectively; p<0.03). These findings suggest that erythroid-derived AA-iPSC have an intrinsic defect in hematopoietic differentiation. Next, we tested whether UM171 modulated hematopoietic differentiation of AA-iPSCs. We found that UM171 significantly stimulated the differentiation of both healthy and AA-iPSCs. In the healthy-iPSC group, the percentage of CD34+cells was 1.9-fold higher when treated with UM171 compared to controls treated with DMSO (37% ± 7.8% vs.19% ± 8.1%; respectively; p<0.03) and in AA-iPSCs the increase was 3.9-fold (45% ± 11% vs. 11% ± 4.9%; p<0.07). The clonogenic capacity of progenitors to produce erythroid and myeloid colonies also was augmented in both groups in comparison to DMSO (28±11 vs. 23±7.2) for healthy-iPSCs and for AA-iPSCs (23±8.5 vs. 12±4.2, p<0.06). We then investigated the molecular pathways influenced by UM171. The transcriptional profile of differentiated CD34+cells showed that UM171 up-regulated genes involved in early hematopoiesis from mesoderm (BRACHYURY and MIXL1) and primitive streak specification (APELA and APLNR), to hemangioblasts and primitive hematopoietic progenitor commitment (TDGF1, SOX17, and KLF5). We also observed the up-regulation of pro-inflammatory NF-kB activators (MAP4K1, ZAP70, and CARD11) and the anti-inflammatory gene PROCR, a marker of cultured HSCs and an NF-kB inhibitor. This balanced network has been previously suggested to be modulated by UM171 (Chagraoui et. al. Cell Stem Cell 2019). Taken together, our results showed that acquired AA-iPSCs may have intrinsic defects that impair hematopoietic differentiation in vitro. This defect may be atavic to the cell or, alternatively, the consequence of epigenetic changes in erythroid precursors provoked by the immune attack. In addition, our findings demonstrate that UM171 significantly stimulate the hematopoietic differentiation of AA-iPSCs and identified a novel molecular mechanism for UM171 as an enhancer of early hematopoietic development programs. These observations may be valuable for improving the achievement of de novo hematopoietic cells. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Young Sun Hwang ◽  
Shinnosuke Suzuki ◽  
Yasunari Seita ◽  
Jumpei Ito ◽  
Yuka Sakata ◽  
...  

ABSTRACTEstablishment of spermatogonia throughout the fetal and postnatal period is essential for production of spermatozoa and male fertility. Here, we established a protocol for in vitro reconstitution of human prospermatogonial specification whereby human primordial germ cell (PGC)-like cells (hPGCLCs) differentiated from human induced pluripotent stem cells were further induced into M-prospermatogonia-like cells (MLCs) and T1 prospermatogonia-like cells (T1LCs) using long-term cultured xenogeneic reconstituted testes. Single cell RNA-sequencing was used to delineate the lineage trajectory leading to T1LCs, which closely resemble human T1-prospermatogonia in vivo and exhibited gene expression related to spermatogenesis and diminished proliferation, a hallmark of quiescent T1 prospermatogonia. Notably, this system enabled us to visualize the dynamic and stage-specific regulation of transposable elements during human prospermatogonial specification. Together, our findings pave the way for understanding and reconstructing human male germline development in vitro.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Anichavezhi Devendran ◽  
Rasheed Bailey ◽  
Sumanta Kar ◽  
Francesca Stillitano ◽  
Irene Turnbull ◽  
...  

Background: Heart failure (HF) is a complex clinical condition associated with substantial morbidity and mortality worldwide. The contractile dysfunction and arrhythmogenesis related to HF has been linked to the remodelling of calcium (Ca ++ ) handling. Phospholamban (PLN) has emerged as a key regulator of intracellular Ca ++ concentration. Of the PLN mutations, L39X is intriguing as it has not been fully characterized. This mutation is believed to be functionally equivalent to PLN null (KO) but contrary to PLN KO mice, L39X carriers develop a lethal cardiomyopathy (CMP). Our study aims at using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) from homozygous L39X carriers to elucidate the role of L39X in human pathophysiology. Our plan also involves the characterization of humanized L39X knock-in mice (KM), which we hypothesize will develop a CMP from mis-localization of PLN and disruption of Ca ++ signalling. Methodology and Results: Mononuclear cells from Hom L39X carriers were obtained to generate 11 integration-free patient-specific iPSC clones. The iPSC-CMs were derived using established protocols. Compared to the WT iPSC-CMs, the Hom L39X derived-CMs PLN had an abnormal cytoplasmic distribution and formed intracellular aggregates, with the loss of perinuclear localization. There was also a 70% and 50% reduction of mRNA and protein expression of PLN respectively in L39X compared to WT iPSC-CMs. These findings indicated that L39X PLN is both under-expressed and mis-localized within the cell. To validate this observation in-vivo, we genetically modified FVB mice to harbour the human L39X. Following electroporation, positively transfected mouse embryonic stem cells were injected into host blastocysts to make humanized KM that were subsequently used to generate either a protamine-Cre (endogenous PLN driven expression) or a cardiac TNT mouse (i.e., CMP specific). Conclusion: Our data confirm an abnormal intracellular distribution of PLN, with the loss of perinuclear accumulation and mis-localization, suggestive of ineffective targeting to or retention of L39X. The mouse model will be critically important to validate the in-vitro observations and provides an ideal platform for future studies centred on the development of novel therapeutic strategies including virally delivered CRISPR/Cas9 for in-vivo gene editing and testing of biochemical signalling pathways.


2017 ◽  
Vol 214 (10) ◽  
pp. 2817-2827 ◽  
Author(s):  
Julie R. Perlin ◽  
Anne L. Robertson ◽  
Leonard I. Zon

Hematopoietic stem cell transplantation (HSCT) is an important therapy for patients with a variety of hematological malignancies. HSCT would be greatly improved if patient-specific hematopoietic stem cells (HSCs) could be generated from induced pluripotent stem cells in vitro. There is an incomplete understanding of the genes and signals involved in HSC induction, migration, maintenance, and niche engraftment. Recent studies in zebrafish have revealed novel genes that are required for HSC induction and niche regulation of HSC homeostasis. Manipulation of these signaling pathways and cell types may improve HSC bioengineering, which could significantly advance critical, lifesaving HSCT therapies.


Sign in / Sign up

Export Citation Format

Share Document