scholarly journals SUN-LB106 The Transcriptomic Evidences on Role of Abdominal Visceral vs. Subcutaneous Adipose Tissue in the Pathophysiology of Diabetes in Asian Indian Indicates the Involvement of Both

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Sandeep Kumar Mathur ◽  
Anshul Kumar ◽  
Pradeep tiwari ◽  
aditya Saxena

Abstract Introduction: Asian Indians show “thin fat phenotype” characterized by higher visceral adipose tissue(VAT) and lower subcutaneous adipose tissue(SAT) mass and their higher cardio-metabolic risk has been attributed to this fat distribution. However, the underlying molecular pathology and role of these adipose depots in the pathogenesis of T2D in them remains unknown.Hypothesis: The comparison of transcription profiles of abdominal VAT and SAT and their correlation with diabetes related intermediate phenotypic traits could shed some light on their role in the pathophysiology of diabetes.MethodologySubjects: 19 diabetics (M: F ratio, 8:11) and 16 age and BMI matched controls (M: F ratio 5:11) undergoing abdominal surgery (non-malignant and non-infective conditions).Clinical Parameters: Anthropometry, Serum glucose, insulin, HOMA-R, HbA1c, lipid profile, FFA, adipocytokines. Abdominal VAT, SAT and liver fat were estimated by MRI.Adipose tissue biopsy: SAT and VAT samples were taken during surgery. Genome-wide gene expression profiling of these biopsies was performed using Affymetrix GeneChipPrimeView® arrays. The data was submitted to NCBI-GEO (Accession # GSE78721). Selected genes were validated by qPCR. Gene set enrichment analysis (GSEA) for functional and Weighted Gene Correlation Analysis (WGCNA) for statistical comparison was done.Results:Diabetics had higher waist circumference (p=0.05), HOMA-R (p=0.0002), Visceral fat content (p=0.02) and adipocyte size (p=0.02)GSEA: diabetics vs. controls: In VAT 16 gene sets were upregulated (FDR < 25%) enriching various immune system and inflammation-related pathways. In SAT too, various inflammatory genes were upregulated however they were statistically non-significant (FDR > 25%). Moreover, 12 out of 16 significantly enriched pathways in VAT were among the top 20 pathways in SAT. GSEA in diabetics: VAT vs SAT: None of the gene sets were found significant at FDR < 25% which substantiated our hypothesis that overall pathophysioloigcal alteration in both depots are similar. WGCNA for statistical comparison of VAT and SAT depots The correlation between measures of average gene expression and overall connectivity between both depots was significantly positive. Several modules of co-expressed genes in both VAT and SAT showed positive as well as negative correlation with various intermediate phenotypic traits of diabetes. In both depots they enriched several pathways otherwise known to be associated with pathological adipose tissue like inflammation, adipogenesis etc. Conclusions In Asian Indians, diabetes pathology inflicts similar molecular alternations in VAT and SAT, which are more intense in the former. The role of both adipose depots in the pathophysiology of diabetes is along similar lines and they enrich several molecular pathways which are otherwise known to be implicated in pathological adipose tissue.

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1230
Author(s):  
Anshul Kumar ◽  
Pradeep Tiwari ◽  
Aditya Saxena ◽  
Naincy Purwar ◽  
Nitin Wahi ◽  
...  

The roles of abdominal visceral (VAT) and subcutaneous adipose tissue (SAT) in the molecular pathogenesis type-2 diabetics (T2D) among Asian Indians showing a “thin fat” phenotype largely remains obscure. In this study, we generated transcription profiles in biopsies of these adipose depots obtained during surgery in 19 diabetics (M: F ratio, 8:11) and 16 (M: F ratio 5:11) age- and BMI-matched non-diabetics. Gene set enrichment analysis (GSEA) was used for comparing transcription profile and showed that 19 gene sets, enriching inflammation and immune system-related pathways, were upregulated in diabetics with F.D.R. <25% and >25%, respectively, in VAT and SAT. Moreover, 13 out of the 19 significantly enriched pathways in VAT were among the top 20 pathways in SAT. On comparison of VAT vs. SAT among diabetics, none of the gene sets were found significant at F.D.R. <25%. The Weighted Gene Correlation Analysis (WGCNA) analysis of the correlation between measures of average gene expression and overall connectivity between VAT and SAT was significantly positive. Several modules of co-expressed genes in both the depots showed a bidirectional correlation with various diabetes-related intermediate phenotypic traits. They enriched several diabetes pathogenicity marker pathways, such as inflammation, adipogenesis, etc. It is concluded that, in Asian Indians, diabetes pathology inflicts similar molecular alternations in VAT and SAT, which are more intense in the former. Both adipose depots possibly play a role in the pathophysiology of T2D, and whether it is protective or pathogenic also depends on the nature of modules of co-expressed genes contained in them.


2004 ◽  
Vol 97 (4) ◽  
pp. 1309-1312 ◽  
Author(s):  
Pernille Keller ◽  
Charlotte Keller ◽  
Lindsay E. Robinson ◽  
Bente K. Pedersen

Exercise increases IL-6 mRNA in subcutaneous adipose tissue; however, the immediate signal for the IL-6 induction is unknown. We, therefore, explored the possible role of epinephrine in the induction of IL-6 in adipose tissue. Subcutaneous adipose tissue biopsies and blood samples were obtained from eight healthy men (mean age 27 yr, mean height 184 cm, mean weight 83 kg) in response to epinephrine infusion or in response to saline infusion. The rate of epinephrine infusion was such that circulating epinephrine concentrations mimicked that typically seen during exercise. The level of IL-6 mRNA in subcutaneous adipose tissue increased 26-fold (95% confidence interval, 9- to 166-fold) at 3 h of epinephrine infusion compared with controls ( P = 0.028). In addition, plasma levels of IL-6 increased in response to epinephrine infusion ( P < 0.001). However, epinephrine did not affect the IL-6 receptor mRNA. In conclusion, epinephrine acutely increases IL-6 mRNA levels in subcutaneous adipose tissue as well as circulating IL-6 levels in healthy men.


2011 ◽  
Vol 20 (5) ◽  
pp. e153-e156 ◽  
Author(s):  
Clara Bambace ◽  
Mariassunta Telesca ◽  
Elena Zoico ◽  
Anna Sepe ◽  
Debora Olioso ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Marianthi Kalafati ◽  
Michael Lenz ◽  
Gökhan Ertaylan ◽  
Ilja C. W. Arts ◽  
Chris T. Evelo ◽  
...  

Background: Macrophages play an important role in regulating adipose tissue function, while their frequencies in adipose tissue vary between individuals. Adipose tissue infiltration by high frequencies of macrophages has been linked to changes in adipokine levels and low-grade inflammation, frequently associated with the progression of obesity. The objective of this project was to assess the contribution of relative macrophage frequencies to the overall subcutaneous adipose tissue gene expression using publicly available datasets.Methods: Seven publicly available microarray gene expression datasets from human subcutaneous adipose tissue biopsies (n = 519) were used together with TissueDecoder to determine the adipose tissue cell-type composition of each sample. We divided the subjects in four groups based on their relative macrophage frequencies. Differential gene expression analysis between the high and low relative macrophage frequencies groups was performed, adjusting for sex and study. Finally, biological processes were identified using pathway enrichment and network analysis.Results: We observed lower frequencies of adipocytes and higher frequencies of adipose stem cells in individuals characterized by high macrophage frequencies. We additionally studied whether, within subcutaneous adipose tissue, interindividual differences in the relative frequencies of macrophages were reflected in transcriptional differences in metabolic and inflammatory pathways. Adipose tissue of individuals with high macrophage frequencies had a higher expression of genes involved in complement activation, chemotaxis, focal adhesion, and oxidative stress. Similarly, we observed a lower expression of genes involved in lipid metabolism, fatty acid synthesis, and oxidation and mitochondrial respiration.Conclusion: We present an approach that combines publicly available subcutaneous adipose tissue gene expression datasets with a deconvolution algorithm to calculate subcutaneous adipose tissue cell-type composition. The results showed the expected increased inflammation gene expression profile accompanied by decreased gene expression in pathways related to lipid metabolism and mitochondrial respiration in subcutaneous adipose tissue in individuals characterized by high macrophage frequencies. This approach demonstrates the hidden strength of reusing publicly available data to gain cell-type-specific insights into adipose tissue function.


BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Angelina Passaro ◽  
Maria Agata Miselli ◽  
Juana Maria Sanz ◽  
Edoardo Dalla Nora ◽  
Mario Luca Morieri ◽  
...  

Nutrition ◽  
2019 ◽  
Vol 63-64 ◽  
pp. 92-97 ◽  
Author(s):  
Emad Yuzbashian ◽  
Golaleh Asghari ◽  
Mehdi Hedayati ◽  
Maryam Zarkesh ◽  
Parvin Mirmiran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document