scholarly journals Integrating geostatistical maps and infectious disease transmission models using adaptive multiple importance sampling

2021 ◽  
Vol 15 (4) ◽  
Author(s):  
Renata Retkute ◽  
Panayiota Touloupou ◽  
María-Gloria Basáñez ◽  
T. Déirdre Hollingsworth ◽  
Simon E. F. Spencer
2017 ◽  
Vol 13 (4) ◽  
pp. e1005481 ◽  
Author(s):  
Andrew F. Brouwer ◽  
Mark H. Weir ◽  
Marisa C. Eisenberg ◽  
Rafael Meza ◽  
Joseph N. S. Eisenberg

2020 ◽  
Author(s):  
Angela Maria Cadavid Restrepo ◽  
Luis Furuya-Kanamori ◽  
Helen Mayfield ◽  
Eric J. Nilles ◽  
Colleen L. Lau

2008 ◽  
Vol 6 (6) ◽  
pp. 477-487 ◽  
Author(s):  
Nicholas C. Grassly ◽  
Christophe Fraser

2012 ◽  
Vol 54 (1-2) ◽  
pp. 23-36 ◽  
Author(s):  
E. K. WATERS ◽  
H. S. SIDHU ◽  
G. N. MERCER

AbstractPatchy or divided populations can be important to infectious disease transmission. We first show that Lloyd’s mean crowding index, an index of patchiness from ecology, appears as a term in simple deterministic epidemic models of the SIR type. Using these models, we demonstrate that the rate of movement between patches is crucial for epidemic dynamics. In particular, there is a relationship between epidemic final size and epidemic duration in patchy habitats: controlling inter-patch movement will reduce epidemic duration, but also final size. This suggests that a strategy of quarantining infected areas during the initial phases of a virulent epidemic might reduce epidemic duration, but leave the population vulnerable to future epidemics by inhibiting the development of herd immunity.


Sign in / Sign up

Export Citation Format

Share Document