scholarly journals Solvability of a general nonlinear integral equation in $L^1$ spaces by means of a measure of weak noncompactness

2015 ◽  
Vol 27 (2) ◽  
pp. 273-287 ◽  
Author(s):  
Fuli Wang
Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 130
Author(s):  
Mohamed Amine Farid ◽  
Karim Chaira ◽  
El Miloudi Marhrani ◽  
Mohamed Aamri

In this paper, we prove some fixed point theorems for the nonlinear operator A · B + C in Banach algebra. Our fixed point results are obtained under a weak topology and measure of weak noncompactness; and we give an example of the application of our results to a nonlinear integral equation in Banach algebra.


Filomat ◽  
2009 ◽  
Vol 23 (3) ◽  
pp. 203-209
Author(s):  
E.M. El-Abd

In this paper we prove theorems on the existence of integrable and monotonic solutions of nonlinear integral equation in Lebesgue Space. The basic tool used in the proof is the fixed point theorem due to Darbo with respect to the so-called measure of weak noncompactness.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3593-3597
Author(s):  
Ravindra Bisht

Combining the approaches of functionals associated with h-concave functions and fixed point techniques, we study the existence and uniqueness of a solution for a class of nonlinear integral equation: x(t) = g1(t)-g2(t) + ? ?t,0 V1(t,s)h1(s,x(s))ds + ? ?T,0 V2(t,s)h2(s,x(s))ds; where C([0,T];R) denotes the space of all continuous functions on [0,T] equipped with the uniform metric and t?[0,T], ?,? are real numbers, g1, g2 ? C([0, T],R) and V1(t,s), V2(t,s), h1(t,s), h2(t,s) are continuous real-valued functions in [0,T]xR.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mahmoud Bousselsal ◽  
Sidi Hamidou Jah

We study the existence of solutions of a nonlinear Volterra integral equation in the space L1[0,+∞). With the help of Krasnoselskii’s fixed point theorem and the theory of measure of weak noncompactness, we prove an existence result for a functional integral equation which includes several classes on nonlinear integral equations. Our results extend and generalize some previous works. An example is given to support our results.


2020 ◽  
Vol 21 (1) ◽  
pp. 135
Author(s):  
Godwin Amechi Okeke ◽  
Mujahid Abbas

It is our purpose in this paper to prove some fixed point results and Fej´er monotonicity of some faster fixed point iterative sequences generated by some nonlinear operators satisfying rational inequality in complex valued Banach spaces. We prove that results in complex valued Banach spaces are valid in cone metric spaces with Banach algebras. Furthermore, we apply our results in solving certain mixed type VolterraFredholm functional nonlinear integral equation in complex valued Banach spaces.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Maryam Ramezani ◽  
Hamid Baghani ◽  
Ozgur Ege ◽  
Manuel De la Sen

In this paper, using the conditions of Taleb-Hanebaly’s theorem in a modular space where the modular is s-convex and symmetric with respect to the ordinate axis, we prove a new generalized modular version of the Schauder and Petryshyn fixed point theorems for nonexpansive mappings in s-convex sets. Our results can be applied to a nonlinear integral equation in Musielak-Orlicz space L p where 0 < p ≤ 1 and 0 < s ≤ p .


Sign in / Sign up

Export Citation Format

Share Document