Effect of Therapeutic Mild Hypothermia on the Genomics of the Hippocampus After Moderate Traumatic Brain Injury in Rats

Neurosurgery ◽  
2010 ◽  
Vol 67 (3) ◽  
pp. 730-742 ◽  
Author(s):  
Jun-feng Feng ◽  
Kui-ming Zhang ◽  
Ji-yao Jiang ◽  
Guo-yi Gao ◽  
Xi'an Fu ◽  
...  
2007 ◽  
Vol 22 (3) ◽  
pp. 229-235 ◽  
Author(s):  
Wusi Qiu ◽  
Ying Zhang ◽  
Hong Sheng ◽  
Jianmin Zhang ◽  
Weiming Wang ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8276
Author(s):  
Pen-Sen Huang ◽  
Ping-Yen Tsai ◽  
Ling-Yu Yang ◽  
Daniela Lecca ◽  
Weiming Luo ◽  
...  

Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide. It can instigate immediate cell death, followed by a time-dependent secondary injury that results from disproportionate microglial and astrocyte activation, excessive inflammation and oxidative stress in brain tissue, culminating in both short- and long-term cognitive dysfunction and behavioral deficits. Within the brain, the hippocampus is particularly vulnerable to a TBI. We studied a new pomalidomide (Pom) analog, namely, 3,6′-dithioPom (DP), and Pom as immunomodulatory imide drugs (IMiD) for mitigating TBI-induced hippocampal neurodegeneration, microgliosis, astrogliosis and behavioral impairments in a controlled cortical impact (CCI) model of TBI in rats. Both agents were administered as a single intravenous dose (0.5 mg/kg) at 5 h post injury so that the efficacies could be compared. Pom and DP significantly reduced the contusion volume evaluated at 24 h and 7 days post injury. Both agents ameliorated short-term memory deficits and anxiety behavior at 7 days after a TBI. The number of degenerating neurons in the CA1 and dentate gyrus (DG) regions of the hippocampus after a TBI was reduced by Pom and DP. DP, but not Pom, significantly attenuated the TBI-induced microgliosis and DP was more efficacious than Pom at attenuating the TBI-induced astrogliosis in CA1 and DG at 7D after a TBI. In summary, a single intravenous injection of Pom or DP, given 5 h post TBI, significantly reduced hippocampal neurodegeneration and prevented cognitive deficits with a concomitant attenuation of the neuroinflammation in the hippocampus.


2009 ◽  
Vol 26 (5) ◽  
pp. E24 ◽  
Author(s):  
Raymond Choi ◽  
Robert H. Andres ◽  
Gary K. Steinberg ◽  
Raphael Guzman

Increasing evidence in animal models and clinical trials for stroke, hypoxic encephalopathy for children, and traumatic brain injury have shown that mild hypothermia may attenuate ischemic damage and improve neurological outcome. However, it is less clear if mild intraoperative hypothermia during vascular neurosurgical procedures results in improved outcomes for patients. This review examines the scientific evidence behind hypothermia as a treatment and discusses factors that may be important for the use of this adjuvant technique, including cooling temperature, duration of hypothermia, and rate of rewarming.


Brain Injury ◽  
2006 ◽  
Vol 20 (5) ◽  
pp. 519-527 ◽  
Author(s):  
Stephen R. McCauley ◽  
Claudia Pedroza ◽  
Sharon A. Brown ◽  
Corwin Boake ◽  
Harvey S. Levin ◽  
...  

2014 ◽  
Vol 127 ◽  
pp. 97-100 ◽  
Author(s):  
Eiichi Suehiro ◽  
Hiroyasu Koizumi ◽  
Yuichi Fujiyama ◽  
Hiroshi Yoneda ◽  
Michiyasu Suzuki

Sign in / Sign up

Export Citation Format

Share Document