scholarly journals First Passage Problems for Asymmetric Wiener Processes

2006 ◽  
Vol 43 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Mario Lefebvre

The problem of computing the moment generating function of the first passage time T to a > 0 or −b < 0 for a one-dimensional Wiener process {X(t), t ≥ 0} is generalized by assuming that the infinitesimal parameters of the process may depend on the sign of X(t). The probability that the process is absorbed at a is also computed explicitly, as is the expected value of T.

2006 ◽  
Vol 43 (01) ◽  
pp. 175-184
Author(s):  
Mario Lefebvre

The problem of computing the moment generating function of the first passage time T to a &gt; 0 or −b &lt; 0 for a one-dimensional Wiener process {X(t), t ≥ 0} is generalized by assuming that the infinitesimal parameters of the process may depend on the sign of X(t). The probability that the process is absorbed at a is also computed explicitly, as is the expected value of T.


1986 ◽  
Vol 23 (2) ◽  
pp. 398-408 ◽  
Author(s):  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi ◽  
L. Sacerdote

The transition p.d.f. for a one-dimensional Rayleigh process in the presence of an absorption condition or a zero-flux condition in the origin is obtained in closed form. The first-passage-time problem through an arbitrary constant boundary is then considered and the moment-generating function is determined. In some particular cases the first-passage-time p.d.f. is explicitly derived. Use of some of these results is finally made to obtain the transition p.d.f. of the affine drift-linear infinitesimal-variance diffusion process when the origin is an entrance or a regular boundary in the presence of a reflection condition.


1986 ◽  
Vol 23 (02) ◽  
pp. 398-408 ◽  
Author(s):  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi ◽  
L. Sacerdote

The transition p.d.f. for a one-dimensional Rayleigh process in the presence of an absorption condition or a zero-flux condition in the origin is obtained in closed form. The first-passage-time problem through an arbitrary constant boundary is then considered and the moment-generating function is determined. In some particular cases the first-passage-time p.d.f. is explicitly derived. Use of some of these results is finally made to obtain the transition p.d.f. of the affine drift-linear infinitesimal-variance diffusion process when the origin is an entrance or a regular boundary in the presence of a reflection condition.


1995 ◽  
Vol 32 (4) ◽  
pp. 1007-1013 ◽  
Author(s):  
Marco Dominé

The first-passage problem for the one-dimensional Wiener process with drift in the presence of elastic boundaries is considered. We use the Kolmogorov backward equation with corresponding boundary conditions to derive explicit closed-form expressions for the expected value and the variance of the first-passage time. Special cases with pure absorbing and/or reflecting barriers arise for a certain choice of a parameter constellation.


1989 ◽  
Vol 21 (4) ◽  
pp. 945-948 ◽  
Author(s):  
Mario Lefebvre ◽  
Éric Léonard

Let dx(t) = y(t) dt, where y(t) is a one-dimensional Wiener process. In this note, we obtain a formula for the moment-generating function of y(T), where T is the 1/2-winding time about the origin of the integrated Wiener process x(t).


1989 ◽  
Vol 21 (04) ◽  
pp. 945-948
Author(s):  
Mario Lefebvre ◽  
Éric Léonard

Let dx(t) = y(t) dt, where y(t) is a one-dimensional Wiener process. In this note, we obtain a formula for the moment-generating function of y(T), where T is the 1/2-winding time about the origin of the integrated Wiener process x(t).


1995 ◽  
Vol 32 (04) ◽  
pp. 1007-1013 ◽  
Author(s):  
Marco Dominé

The first-passage problem for the one-dimensional Wiener process with drift in the presence of elastic boundaries is considered. We use the Kolmogorov backward equation with corresponding boundary conditions to derive explicit closed-form expressions for the expected value and the variance of the first-passage time. Special cases with pure absorbing and/or reflecting barriers arise for a certain choice of a parameter constellation.


1997 ◽  
Vol 34 (3) ◽  
pp. 623-631 ◽  
Author(s):  
R. Gutiérrez ◽  
L. M. Ricciardi ◽  
P. Román ◽  
F. Torres

In this paper we study a Volterra integral equation of the second kind, including two arbitrary continuous functions, in order to determine first-passage-time probability density functions through time-dependent boundaries for time-non-homogeneous one-dimensional diffusion processes with natural boundaries. These results generalize those which were obtained for time-homogeneous diffusion processes by Giorno et al. [3], and for some particular classes of time-non-homogeneous diffusion processes by Gutiérrez et al. [4], [5].


Sign in / Sign up

Export Citation Format

Share Document