Moments of the first-passage time of a Wiener process with drift between two elastic barriers

1995 ◽  
Vol 32 (4) ◽  
pp. 1007-1013 ◽  
Author(s):  
Marco Dominé

The first-passage problem for the one-dimensional Wiener process with drift in the presence of elastic boundaries is considered. We use the Kolmogorov backward equation with corresponding boundary conditions to derive explicit closed-form expressions for the expected value and the variance of the first-passage time. Special cases with pure absorbing and/or reflecting barriers arise for a certain choice of a parameter constellation.

1995 ◽  
Vol 32 (04) ◽  
pp. 1007-1013 ◽  
Author(s):  
Marco Dominé

The first-passage problem for the one-dimensional Wiener process with drift in the presence of elastic boundaries is considered. We use the Kolmogorov backward equation with corresponding boundary conditions to derive explicit closed-form expressions for the expected value and the variance of the first-passage time. Special cases with pure absorbing and/or reflecting barriers arise for a certain choice of a parameter constellation.


1996 ◽  
Vol 33 (01) ◽  
pp. 164-175 ◽  
Author(s):  
Marco Dominé

We solve the Fokker-Planck equation for the Wiener process with drift in the presence of elastic boundaries and a fixed start point. An explicit expression is obtained for the first passage density. The cases with pure absorbing and/or reflecting barriers arise for a special choice of a parameter constellation. These special cases are compared with results in Darling and Siegert [5] and Sweet and Hardin [15].


1996 ◽  
Vol 33 (1) ◽  
pp. 164-175 ◽  
Author(s):  
Marco Dominé

We solve the Fokker-Planck equation for the Wiener process with drift in the presence of elastic boundaries and a fixed start point. An explicit expression is obtained for the first passage density. The cases with pure absorbing and/or reflecting barriers arise for a special choice of a parameter constellation. These special cases are compared with results in Darling and Siegert [5] and Sweet and Hardin [15].


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Chuancun Yin ◽  
Huiqing Wang

We consider the general one-dimensional time-homogeneous regular diffusion process between two reflecting barriers. An approach based on the Itô formula with corresponding boundary conditions allows us to derive the differential equations with boundary conditions for the Laplace transform of the first passage time and the value function. As examples, the explicit solutions of them for several popular diffusions are obtained. In addition, some applications to risk theory are considered.


1974 ◽  
Vol 41 (3) ◽  
pp. 793-797 ◽  
Author(s):  
W. C. Lennox ◽  
D. A. Fraser

A narrow-band stochastic process is obtained by exciting a lightly damped linear oscillator by wide-band stationary noise. The equation describing the envelope of the process is replaced, in an asymptotic sense, by a one-dimensional Markov process and the modified Kolmogorov (backward) equation describing the first-passage distribution function is solved exactly using classical methods by reducing the problem to that of finding the related eigenvalues and eigenfunctions; in this case degenerate hypergeometric functions. If the exciting process is white noise, the analysis is exact. The method also yields reasonable approximations for the first-passage time of the actual narrow-band process for either a one-sided or a symmetric two-sided barrier.


2006 ◽  
Vol 43 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Mario Lefebvre

The problem of computing the moment generating function of the first passage time T to a > 0 or −b < 0 for a one-dimensional Wiener process {X(t), t ≥ 0} is generalized by assuming that the infinitesimal parameters of the process may depend on the sign of X(t). The probability that the process is absorbed at a is also computed explicitly, as is the expected value of T.


2006 ◽  
Vol 43 (01) ◽  
pp. 175-184
Author(s):  
Mario Lefebvre

The problem of computing the moment generating function of the first passage time T to a &gt; 0 or −b &lt; 0 for a one-dimensional Wiener process {X(t), t ≥ 0} is generalized by assuming that the infinitesimal parameters of the process may depend on the sign of X(t). The probability that the process is absorbed at a is also computed explicitly, as is the expected value of T.


1966 ◽  
Vol 33 (1) ◽  
pp. 187-191 ◽  
Author(s):  
A. H. Gray

The first-passage problem in a random vibrational system is solved by means of approximations which convert the problem to a first-order one-dimensional Markov process. Laplace transforms are used to evaluate the mean square time to failure.


Sign in / Sign up

Export Citation Format

Share Document