SDC-3 coordinates the assembly of a dosage compensation complex on the nematode X chromosome

Development ◽  
1997 ◽  
Vol 124 (5) ◽  
pp. 1019-1031 ◽  
Author(s):  
T.L. Davis ◽  
B.J. Meyer

X chromosome expression in C. elegans is controlled by a chromosome-wide regulatory process called dosage compensation that specifically reduces by half the level of transcripts made from each hermaphrodite X chromosome. This process equalizes X expression between the sexes (XX hermaphrodites and XO males), despite their two-fold difference in X chromosome dose, and thereby prevents sex-specific lethality. Dosage compensation is achieved by a protein complex that associates with X in a sex-specific fashion to modulate gene expression. SDC-3, a protein that coordinately controls both sex determination and dosage compensation, activates dosage compensation by directing the dosage compensation protein complex to the hermaphrodite X chromosomes. We show that SDC-3 coordinates this assembly through its own sex-specific association with X. SDC-3 in turn requires other members of the dosage compensation gene hierarchy for its stability and its X localization. In addition, SDC-3 requires its own zinc finger motifs and an amino-terminal region for its X association. Our experiments suggest the possible involvement of zinc finger motifs in X chromosome recognition and the amino-terminal region in interactions with other dosage compensation proteins.

Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3323-3334 ◽  
Author(s):  
D.R. Hsu ◽  
P.T. Chuang ◽  
B.J. Meyer

DPY-30 is an essential component of the C. elegans dosage compensation machinery that reduces X chromosome transcript levels in hermaphrodites (XX). DPY-30 is required for the sex-specific association of DPY-27 (a chromosome condensation protein homolog) with the hermaphrodite X chromosomes. Loss of dpy-30 activity results in XX-specific lethality. We demonstrate that dpy-30 encodes a novel nuclear protein of 123 amino acids that is present in both hermaphrodites and males (XO) throughout development. DPY-30 itself is not associated with the X chromosomes, nor is its pattern of expression perturbed by mutations in the gene hierarchy that controls dosage compensation. Therefore, DPY-30 is a ubiquitous factor that is likely to promote the hermaphrodite-specific association of DPY-27 with X by affecting the activity of a sex-specific dosage compensation gene. In XO animals, DPY-30 is required for developmental processes other than dosage compensation: coordinated movement, normal body size, correct tail morphology and mating behavior. We demonstrate that rescue of both the XX-specific lethality and the XO-specific morphological defects caused by dpy-30 mutations can be achieved by inducing dpy-30 transcripts either in the mother or in the embryo through the end of gastrulation. dpy-30 appears to be cotranscribed in an operon with a novel RNA-binding protein.


2021 ◽  
Author(s):  
Laura Breimann ◽  
Ana Karina Morao ◽  
Jun Kim ◽  
David Sebastian Jimenez ◽  
Nina Maryn ◽  
...  

Condensin is a multi-subunit SMC complex that binds to and compacts chromosomes. Here we addressed the regulation of condensin binding dynamics using C. elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes its binding. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X-chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C data in the dpy-21 null mutant showed little change compared to wild type, uncoupling Hi-C measured long-range DNA contacts from transcriptional repression of the X chromosomes. Together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.


2021 ◽  
Author(s):  
Michael B Davis ◽  
Bahaar Chawla ◽  
Eshna Jash ◽  
Lillian E. Tushman ◽  
Rebecca A. Haines ◽  
...  

Dosage compensation involves chromosome-wide gene regulatory mechanisms which impact higher order chromatin structure and are crucial for organismal health. Using a genetic approach, we identified Argonaute genes which promote dosage compensation in C. elegans. Dosage compensation in C. elegans hermaphrodites is initiated by the silencing of xol-1 and subsequent activation of the Dosage Compensation Complex (DCC) which binds to both hermaphrodite X chromosomes and reduces transcriptional output by twofold. A hallmark phenotype of dosage compensation mutants is decondensation of the X chromosomes. We characterized this phenotype in Argonaute mutants using X chromosome paint probe and fluorescence microscopy. We found that while nuclear Argonaute mutants hrde-1 and nrde-3 exhibit de-repression of xol-1 transcripts, they also effect X chromosome condensation in a xol-1-independent manner. We also characterized the physiological contribution of Argonaute genes to dosage compensation using genetic assays and find that hrde-1 and nrde-3, together with the piRNA Argonaute prg-1, contribute to healthy dosage compensation both upstream and downstream of xol-1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoma Ota ◽  
Makoto Hayashi ◽  
Shumpei Morita ◽  
Hiroki Miura ◽  
Satoru Kobayashi

AbstractDosage compensation is a mechanism that equalizes sex chromosome gene expression between the sexes. In Drosophila, individuals with two X chromosomes (XX) become female, whereas males have one X chromosome (XY). In males, dosage compensation of the X chromosome in the soma is achieved by five proteins and two non-coding RNAs, which assemble into the male-specific lethal (MSL) complex to upregulate X-linked genes twofold. By contrast, it remains unclear whether dosage compensation occurs in the germline. To address this issue, we performed transcriptome analysis of male and female primordial germ cells (PGCs). We found that the expression levels of X-linked genes were approximately twofold higher in female PGCs than in male PGCs. Acetylation of lysine residue 16 on histone H4 (H4K16ac), which is catalyzed by the MSL complex, was undetectable in these cells. In male PGCs, hyperactivation of X-linked genes and H4K16ac were induced by overexpression of the essential components of the MSL complex, which were expressed at very low levels in PGCs. Together, these findings indicate that failure of MSL complex formation results in the absence of X-chromosome dosage compensation in male PGCs.


2016 ◽  
Vol 148 (1) ◽  
pp. 52-67 ◽  
Author(s):  
James A. Birchler

Dosage compensation in Drosophila involves an approximately 2-fold increase in expression of the single X chromosome in males compared to the per gene expression in females with 2 X chromosomes. Two models have been considered for an explanation. One proposes that the male-specific lethal (MSL) complex that is associated with the male X chromosome brings histone modifiers to the sex chromosome to increase its expression. The other proposes that the inverse effect which results from genomic imbalance would tend to upregulate the genome approximately 2-fold, but the MSL complex sequesters histone modifiers from the autosomes to the X to mute this autosomal male-biased expression. On the X, the MSL complex must override the high level of resulting histone modifications to prevent overcompensation of the X chromosome. Each model is evaluated in terms of fitting classical genetic and recent molecular data. Potential paths toward resolving the models are suggested.


PLoS Genetics ◽  
2015 ◽  
Vol 11 (12) ◽  
pp. e1005698 ◽  
Author(s):  
Maxwell Kramer ◽  
Anna-Lena Kranz ◽  
Amanda Su ◽  
Lara H. Winterkorn ◽  
Sarah Elizabeth Albritton ◽  
...  

1967 ◽  
Vol 9 (3) ◽  
pp. 343-357 ◽  
Author(s):  
Hans Grüneberg

Contrary to opinions expressed by various authors, the phenotype of heterozygotes for mammalian sex-linked genes gives no support for the Lyon hypothesis (L.H.). Evidence, mainly from the mouse, shows that in such heterozygotes, both alleles act together as in autosomal genes.In the present paper, it is shown that neither the behaviour of double heterozygotes for sex-linked genes nor that of X-autosome translocations provides independent evidence in favour of the L.H.: in each case, the interpretation depends on that of the behaviour of single heterozygotes and hence fails to discriminate. Moreover, new facts from both types of situation are also contrary to the L.H. In particular, a unified interpretation which fits the behaviour of genes in all known types of X-autosome translocations in the mouse requires the assumption that partial inhibition of gene action happens in both X-chromosomes of mouse females, and presumably the females of other mammals. The new hypothesis is consistent with all relevant genetical facts and, like the L.H., it also accounts for dosage compensation.


2007 ◽  
Vol 27 (24) ◽  
pp. 8760-8769 ◽  
Author(s):  
Kathleen A. Worringer ◽  
Barbara Panning

ABSTRACT In organisms with sex chromosomes, dosage compensation equalizes gene expression between the sexes. In Drosophila melanogaster males, the male-specific lethal (MSL) complex of proteins and two noncoding roX RNAs coat the X chromosome, resulting in a twofold transcriptional upregulation to equalize gene expression with that of females. How MSL complex enrichment on the X chromosome is regulated is not well understood. We performed an RNA interference screen to identify new factors required for dosage compensation. Using a Drosophila Schneider S2 cell line in which green fluorescent protein (GFP)-tagged MSL2 localizes to the X chromosome, we assayed ∼7,200 knockdowns for their effects on GFP-MSL2 distribution. One factor identified is the zinc finger protein Zn72D. In its absence, the MSL complex no longer coats the X chromosome. We demonstrate that Zn72D is required for productive splicing of the transcript for the MSL protein Maleless, explaining the dosage compensation defect. However, Zn72D is required for the viability of both sexes, indicating its functions are not sex specific. Consistent with this, Zn72D colocalizes with elongating RNA polymerase II, implicating it as a more general factor involved in RNA metabolism.


2018 ◽  
Author(s):  
Edridge D’Souza ◽  
Elizaveta Hosage ◽  
Kathryn Weinand ◽  
Steve Gisselbrecht ◽  
Vicky Markstein ◽  
...  

ABSTRACTOver 50 years ago, Susumo Ohno proposed that dosage compensation in mammals would require upregulation of gene expression on the single active X chromosome, a mechanism which to date is best understood in the fruit fly Drosophila melanogaster. Here, we report that the GA-repeat sequences that recruit the conserved MSL dosage compensation complex to the Drosophila X chromosome are also enriched across mammalian X chromosomes, providing genomic support for the Ohno hypothesis. We show that mammalian GA-repeats derive in part from transposable elements, suggesting a mechanism whereby unrelated X chromosomes from dipterans to mammals accumulate binding sites for the MSL dosage compensation complex through convergent evolution, driven by their propensity to accumulate transposable elements.


Sign in / Sign up

Export Citation Format

Share Document