scholarly journals Parallel Universes for Models of X Chromosome Dosage Compensation in Drosophila: A Review

2016 ◽  
Vol 148 (1) ◽  
pp. 52-67 ◽  
Author(s):  
James A. Birchler

Dosage compensation in Drosophila involves an approximately 2-fold increase in expression of the single X chromosome in males compared to the per gene expression in females with 2 X chromosomes. Two models have been considered for an explanation. One proposes that the male-specific lethal (MSL) complex that is associated with the male X chromosome brings histone modifiers to the sex chromosome to increase its expression. The other proposes that the inverse effect which results from genomic imbalance would tend to upregulate the genome approximately 2-fold, but the MSL complex sequesters histone modifiers from the autosomes to the X to mute this autosomal male-biased expression. On the X, the MSL complex must override the high level of resulting histone modifications to prevent overcompensation of the X chromosome. Each model is evaluated in terms of fitting classical genetic and recent molecular data. Potential paths toward resolving the models are suggested.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoma Ota ◽  
Makoto Hayashi ◽  
Shumpei Morita ◽  
Hiroki Miura ◽  
Satoru Kobayashi

AbstractDosage compensation is a mechanism that equalizes sex chromosome gene expression between the sexes. In Drosophila, individuals with two X chromosomes (XX) become female, whereas males have one X chromosome (XY). In males, dosage compensation of the X chromosome in the soma is achieved by five proteins and two non-coding RNAs, which assemble into the male-specific lethal (MSL) complex to upregulate X-linked genes twofold. By contrast, it remains unclear whether dosage compensation occurs in the germline. To address this issue, we performed transcriptome analysis of male and female primordial germ cells (PGCs). We found that the expression levels of X-linked genes were approximately twofold higher in female PGCs than in male PGCs. Acetylation of lysine residue 16 on histone H4 (H4K16ac), which is catalyzed by the MSL complex, was undetectable in these cells. In male PGCs, hyperactivation of X-linked genes and H4K16ac were induced by overexpression of the essential components of the MSL complex, which were expressed at very low levels in PGCs. Together, these findings indicate that failure of MSL complex formation results in the absence of X-chromosome dosage compensation in male PGCs.


Genetics ◽  
1994 ◽  
Vol 138 (3) ◽  
pp. 787-790
Author(s):  
P R da Cunha ◽  
B Granadino ◽  
A L Perondini ◽  
L Sánchez

Abstract Dosage compensation refers to the process whereby females and males with different doses of sex chromosomes have similar amounts of products from sex chromosome-linked genes. We analyzed the process of dosage compensation in Sciara ocellaris, Diptera of the suborder Nematocera. By autoradiography and measurements of X-linked rRNA in females (XX) and males (XO), we found that the rate of transcription of the single X chromosome in males is similar to that of the two X chromosomes in females. This, together with the bloated appearance of the X chromosome in males, support the idea that in sciarids dosage compensation is accomplished by hypertranscription of the X chromosome in males.


2021 ◽  
Vol 4 (9) ◽  
pp. e202000996
Author(s):  
Claudia Isabelle Keller Valsecchi ◽  
Eric Marois ◽  
M Felicia Basilicata ◽  
Plamen Georgiev ◽  
Asifa Akhtar

Sex chromosomes induce potentially deleterious gene expression imbalances that are frequently corrected by dosage compensation (DC). Three distinct molecular strategies to achieve DC have been previously described in nematodes, fruit flies, and mammals. Is this a consequence of distinct genomes, functional or ecological constraints, or random initial commitment to an evolutionary trajectory? Here, we study DC in the malaria mosquito Anopheles gambiae. The Anopheles and Drosophila X chromosomes evolved independently but share a high degree of homology. We find that Anopheles achieves DC by a mechanism distinct from the Drosophila MSL complex–histone H4 lysine 16 acetylation pathway. CRISPR knockout of Anopheles msl-2 leads to embryonic lethality in both sexes. Transcriptome analyses indicate that this phenotype is not a consequence of defective X chromosome DC. By immunofluorescence and ChIP, H4K16ac does not preferentially enrich on the male X. Instead, the mosquito MSL pathway regulates conserved developmental genes. We conclude that a novel mechanism confers X chromosome up-regulation in Anopheles. Our findings highlight the pluralism of gene-dosage buffering mechanisms even under similar genomic and functional constraints.


2017 ◽  
Vol 372 (1733) ◽  
pp. 20160363 ◽  
Author(s):  
Anna Sahakyan ◽  
Kathrin Plath ◽  
Claire Rougeulle

The human blastocyst forms 5 days after one of the smallest human cells (the sperm) fertilizes one of the largest human cells (the egg). Depending on the sex-chromosome contribution from the sperm, the resulting embryo will either be female, with two X chromosomes (XX), or male, with an X and a Y chromosome (XY). In early development, one of the major differences between XX female and XY male embryos is the conserved process of X-chromosome inactivation (XCI), which compensates gene expression of the two female X chromosomes to match the dosage of the single X chromosome of males. Most of our understanding of the pre-XCI state and XCI establishment is based on mouse studies, but recent evidence from human pre-implantation embryo research suggests that many of the molecular steps defined in the mouse are not conserved in human. Here, we will discuss recent advances in understanding the control of X-chromosome dosage compensation in early human embryonic development and compare it to that of the mouse. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.


2019 ◽  
pp. 75-87
Author(s):  
AI Ibraimov

X-chromosome inactivation (XCI) is the process by which one of two X chromosomes in mammalian female cells is inactivated. The DNA of the inactive X chromosome is packaged in transcriptionally inactive heterochromatin. It is generally accepted that XCI have evolved to enable dosage compensation in mammals as a way to equalize X-linked gene expression between XX and XY individuals. However, there remain several controversial issues regarding the causes of XCI. The most important of them, why dosage compensation of genes? An alternative hypothesis is discussed that XCI is caused by dose compensation for heterochromatin, rather than genes, in the genome of female mammals due to the lack of a sex chromosome in their karyotype with a large constitutive heterochromatin block, as in Y chromosome in males. It is for this reason that heterochromatinization of the euchromatin regions of one of the X chromosomes occurs. The biological meaning of heterochromatinization is to increase the density of condensed chromatin (??) around the interphase nucleus, responsible for removing excess heat from the nucleus into the cytoplasm, since the compaction of ?? depends on the amount of heterochromatin. The consequence of this process is the inactivation of genes that were in the area of heterochromatinization of the X chromosome. Keywords: X-chromosome inactivation; Lyonization; Gene dosage compensation; Heterochromatin dosage compensation; Cell thermoregulation


Author(s):  
Renato Paro ◽  
Ueli Grossniklaus ◽  
Raffaella Santoro ◽  
Anton Wutz

AbstractThis chapter provides an introduction to chromosome-wide dosage compensation systems. We will examine the evolution of dosage compensation, which is thought to be driven by the appearance of differentiated sex chromosomes. In a subset of species with X chromosomal sex determination or XY sex chromosome systems, expression of X-linked genes is regulated by chromosome-wide modifications that equalize gene expression differences between males and females. The molecular mechanisms of X chromosome-wide dosage compensation have been studied in flies, worms, and mammals. Each of these species uses a distinct dosage compensation strategy with a different molecular mechanism. In the wormCaenorhabditis elegans, gene expression on the two X chromosomes of hermaphrodites is reduced to a level that approximates a single X chromosome in males. The fruit flyDrosophila melanogasterachieves dosage compensation by increased transcription of the single X chromosome in males to a level that is similar to the two X chromosomes in females. Lastly, in mammals, one of the two X chromosomes in female cells is transcriptionally inactive and a single X chromosome is transcribed in both sexes. Studies of dosage compensation systems provide insights into how epigenetic regulation controls gene expression and chromatin organization differentially within a cell.


2021 ◽  
Author(s):  
Adrianna K. San Roman ◽  
Alexander K. Godfrey ◽  
Helen Skaletsky ◽  
Daniel W Bellott ◽  
Abigail F Groff ◽  
...  

Dosage compensation in humans - ensuring the viability and fitness of females, with two X chromosomes, and males, with one - is thought to be achieved chromosome-wide by heterochromatinization of one X chromosome during female development. We reassessed this through quantitative gene-by-gene analyses of expression in individuals with one to four X chromosomes, tolerance for loss-of-function mutations, regulation by miRNAs, allele-specific expression, and the presence of homologous genes on the Y chromosome. We found a mosaic of dosage compensation strategies on the human X chromosome reflecting gene-by-gene differences in multiple dimensions, including sensitivity to under- or over-expression. These insights enrich our understanding of Turner, Klinefelter, and other sex chromosome aneuploidy syndromes, and of sex-chromosome-mediated effects on health and disease in euploid males and females.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yisrael Rappaport ◽  
Hanna Achache ◽  
Roni Falk ◽  
Omer Murik ◽  
Oren Ram ◽  
...  

AbstractDuring meiosis, gene expression is silenced in aberrantly unsynapsed chromatin and in heterogametic sex chromosomes. Initiation of sex chromosome silencing is disrupted in meiocytes with sex chromosome-autosome translocations. To determine whether this is due to aberrant synapsis or loss of continuity of sex chromosomes, we engineered Caenorhabditis elegans nematodes with non-translocated, bisected X chromosomes. In early meiocytes of mutant males and hermaphrodites, X segments are enriched with euchromatin assembly markers and active RNA polymerase II staining, indicating active transcription. Analysis of RNA-seq data showed that genes from the X chromosome are upregulated in gonads of mutant worms. Contrary to previous models, which predicted that any unsynapsed chromatin is silenced during meiosis, our data indicate that unsynapsed X segments are transcribed. Therefore, our results suggest that sex chromosome chromatin has a unique character that facilitates its meiotic expression when its continuity is lost, regardless of whether or not it is synapsed.


2018 ◽  
Author(s):  
Doris Bachtrog ◽  
Chris Ellison

The repeatability or predictability of evolution is a central question in evolutionary biology, and most often addressed in experimental evolution studies. Here, we infer how genetically heterogeneous natural systems acquire the same molecular changes, to address how genomic background affects adaptation in natural populations. In particular, we take advantage of independently formed neo-sex chromosomes in Drosophila species that have evolved dosage compensation by co-opting the dosage compensation (MSL) complex, to study the mutational paths that have led to the acquisition of 100s of novel binding sites for the MSL complex in different species. This complex recognizes a conserved 21-bp GA-rich sequence motif that is enriched on the X chromosome, and newly formed X chromosomes recruit the MSL complex by de novo acquisition of this binding motif. We identify recently formed sex chromosomes in the Drosophila repleta and robusta species groups by genome sequencing, and generate genomic occupancy maps of the MSL complex to infer the location of novel binding sites. We find that diverse mutational paths were utilized in each species to evolve 100s of de novo binding motifs along the neo-X, including expansions of microsatellites and transposable element insertions. However, the propensity to utilize a particular mutational path differs between independently formed X chromosomes, and appears to be contingent on genomic properties of that species, such as simple repeat or transposable element density. This establishes the “genomic environment” as an important determinant in predicting the outcome of evolutionary adaptations.


Development ◽  
1997 ◽  
Vol 124 (5) ◽  
pp. 1019-1031 ◽  
Author(s):  
T.L. Davis ◽  
B.J. Meyer

X chromosome expression in C. elegans is controlled by a chromosome-wide regulatory process called dosage compensation that specifically reduces by half the level of transcripts made from each hermaphrodite X chromosome. This process equalizes X expression between the sexes (XX hermaphrodites and XO males), despite their two-fold difference in X chromosome dose, and thereby prevents sex-specific lethality. Dosage compensation is achieved by a protein complex that associates with X in a sex-specific fashion to modulate gene expression. SDC-3, a protein that coordinately controls both sex determination and dosage compensation, activates dosage compensation by directing the dosage compensation protein complex to the hermaphrodite X chromosomes. We show that SDC-3 coordinates this assembly through its own sex-specific association with X. SDC-3 in turn requires other members of the dosage compensation gene hierarchy for its stability and its X localization. In addition, SDC-3 requires its own zinc finger motifs and an amino-terminal region for its X association. Our experiments suggest the possible involvement of zinc finger motifs in X chromosome recognition and the amino-terminal region in interactions with other dosage compensation proteins.


Sign in / Sign up

Export Citation Format

Share Document