Retinoic acid and pattern formation in the developing chick wing: SEM and quantitative studies of early effects on the apical ectodermal ridge and bud outgrowth
When retinoic acid is locally applied to the anterior margin of developing chick wing buds on ion-exchange beads, dose-dependent changes in the skeletal pattern result. At low doses, additional digits develop. At high doses, there is thinning of the symmetrical wing. Local application of retinoic acid to the apex of the bud also leads to pattern changes, but in contrast normal wing patterns are almost always obtained following application posteriorly. These effects are manifest at 6–7 days after the operation although only a brief exposure (14–20 h) to retinoic acid is required. Therefore the morphology of wing buds was studied at shorter times after the start of treatment. The local application of retinoic acid to the wing bud margin leads to changes in extent of the apical ridge that can be detected at 24 h after application. The behaviour of the apical ridge with varying doses and positions of retinoic acid application has been analysed quantitatively and dose response curves obtained. At low doses of retinoic acid, the length of the apical ridge increases or remains constant, but then progressively decreases with higher doses. The progressive obliteration of the ridge starts first near the bead and then involves more distant parts of the bud. Thus the region of the ridge affected depends on the position at which the retinoic acid is applied. We propose that these effects on the apical ridge reflect dose-dependent responses to the local concentration of retinoic acid that varies with distance from the source. At high doses, the apical ridge disappears but at low doses it is maintained. Since grafts of polarizing region tissue also have a graded effect on ridge morphology, a possible interpretation of the retinoic acid effects is that tissue adjacent to the source is converted into polarizing region tissue. Alternatively, retinoic acid may act directly on the ridge cells. The changes in the extent of the apical ridge produced by retinoic acid lead to different forms of bud outgrowth. The form of the outgrowth depends on the dose of retinoic acid, the position of application and the interaction between the effects of the local source of retinoic acid and those of the polarizing region of the host bud. These considerations give some insights into why anterior application of retinoic acid leads to the development of additional digits whereas posterior application generally gives normal wings.