Evolutionary Conservation of Systemic and Reversible Amyloid Aggregation
In response to environmental stress, human cells have been shown to form reversible amyloid aggregates within the nucleus, termed amyloid bodies (A-bodies). These protective physiological structures share many of the biophysical characteristics associated with the pathological amyloids found in Alzheimer's and Parkinson's disease. Here, we show that A-bodies are evolutionarily conserved across the eukaryotic domain, with their detection in D. melanogaster and S. cerevisiae marking the first examples of these functional amyloids being induced outside of a cultured cell setting. The conditions triggering amyloidogenesis varied significantly among the species tested, with results indicating that A-body formation is a severe, but sub-lethal, stress response pathway that is tailored to an organism's environmental norms. RNA-sequencing analyses demonstrate that the regulatory low-complexity long non-coding RNAs that drive A-body aggregation are both conserved and essential in human, mouse, and chicken cells. Thus, the identification of these natural and reversible functional amyloids in a variety of evolutionarily diverse species, highlights the physiological significance of this protein conformation and will be informative in advancing our understanding of both functional and pathological amyloid aggregation events.