Physiological requirements for ciliary reactivation of bracken fern spermatozoids

1980 ◽  
Vol 43 (1) ◽  
pp. 195-207
Author(s):  
S.M. Wolniak ◽  
W.Z. Cande

Physiological parameters affecting reactivated ciliary beat in spermatozoids of braken fern (Pteridium aquilinum) were studied using a Triton/glycerol permeabilized cell model system. Reactivation frequencies of polylysine-tethered cells equalled in vivo rates at neutral pH. Frequency was dependent on ATP and Mg2+ concentration, and reactivation was inhibited by millimolar or greater free calcium. Reactivation was reversibly inhibited by micromolar concentrations of sodium ortho-vanadate, while intact cells were not affected by millimolar levels of the inhibitor. This is the first characterization of in vitro ciliary beat in a non-algal plant cell and demonstrates that the nucleotide and ionic requirements for reactivation of bracken cilia are similar to those of other systems.

2019 ◽  
Vol 10 (4) ◽  
pp. 437-447 ◽  
Author(s):  
D.R. Michael ◽  
T.S. Davies ◽  
K.E. Loxley ◽  
M.D. Allen ◽  
M.A. Good ◽  
...  

Neurodegeneration has been linked to changes in the gut microbiota and this study compares the neuroprotective capability of two bacterial consortia, known as Lab4 and Lab4b, using the established SH-SY5Y neuronal cell model. Firstly, varying total antioxidant capacities (TAC) were identified in the intact cells from each consortia and their secreted metabolites, referred to as conditioned media (CM). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Crystal Violet (CV) assays of cell viability revealed that Lab4 CM and Lab4b CM could induce similar levels of proliferation in SH-SY5Y cells and, despite divergent TAC, possessed a comparable ability to protect undifferentiated and retinoic acid-differentiated cells from the cytotoxic actions of rotenone and undifferentiated cells from the cytotoxic actions of 1-methyl-4-phenylpyridinium iodide (MPP+). Lab4 CM and Lab4b CM also had the ability to attenuate rotenone-induced apoptosis and necrosis with Lab4b inducing the greater effect. Both consortia showed an analogous ability to attenuate intracellular reactive oxygen species accumulation in SH-SY5Y cells although the differential upregulation of genes encoding glutathione reductase and superoxide dismutase by Lab4 CM and Lab4b CM, respectively, implicates the involvement of consortia-specific antioxidative mechanisms of action. This study implicates Lab4 and Lab4b as potential neuroprotective agents and justifies their inclusion in further in vivo studies.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 618-624 ◽  
Author(s):  
Sunita Coutinho ◽  
Thomas Jahn ◽  
Marc Lewitzky ◽  
Stephan Feller ◽  
Peter Hutzler ◽  
...  

We report here the characterization of an adapter protein identified in a yeast 2-hybrid screen with the use of Bcr-Abl as the bait. Grb4 bound to Bcr-Abl in a variety of systems, both in vitro and in vivo, and is an excellent substrate of the Bcr-Abl tyrosine kinase. The association of Grb4 and Bcr-Abl in intact cells was mediated by an src homology (SH)2–mediated phosphotyrosine-dependent interaction as well as an SH3-mediated phosphotyrosine-independent interaction. Grb4 has 68% homology to the adapter protein Nck and has similar but distinct binding specificities in K562 lysates. Subcellular localization studies indicate that Grb4 localizes to both the nucleus and the cytoplasm. Coexpression of kinase-active Bcr-Abl with Grb4 resulted in the translocation of Grb4 from the cytoplasm and the nucleus to the cytoskeleton to colocalize with Bcr-Abl. In addition, expression of Grb4 with kinase-active Bcr-Abl resulted in a redistribution of actin-associated Bcr-Abl. Finally, coexpression of Grb4 and oncogenic v-Abl strongly inhibited v-Abl–induced AP-1 activation. Together, these data indicate that Grb4 in conjunction with Bcr-Abl may be capable of modulating the cytoskeletal structure and negatively interfering with the signaling of oncogenic Abl kinases. Grb4 may therefore play a role in the molecular pathogenesis of chronic myelogenous leukemia. (Blood. 2000;96:618-624)


2020 ◽  
Vol 61 (6) ◽  
pp. 896-910 ◽  
Author(s):  
Eyad Naser ◽  
Stephanie Kadow ◽  
Fabian Schumacher ◽  
Zainelabdeen H. Mohamed ◽  
Christian Kappe ◽  
...  

Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM’s catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 618-624 ◽  
Author(s):  
Sunita Coutinho ◽  
Thomas Jahn ◽  
Marc Lewitzky ◽  
Stephan Feller ◽  
Peter Hutzler ◽  
...  

Abstract We report here the characterization of an adapter protein identified in a yeast 2-hybrid screen with the use of Bcr-Abl as the bait. Grb4 bound to Bcr-Abl in a variety of systems, both in vitro and in vivo, and is an excellent substrate of the Bcr-Abl tyrosine kinase. The association of Grb4 and Bcr-Abl in intact cells was mediated by an src homology (SH)2–mediated phosphotyrosine-dependent interaction as well as an SH3-mediated phosphotyrosine-independent interaction. Grb4 has 68% homology to the adapter protein Nck and has similar but distinct binding specificities in K562 lysates. Subcellular localization studies indicate that Grb4 localizes to both the nucleus and the cytoplasm. Coexpression of kinase-active Bcr-Abl with Grb4 resulted in the translocation of Grb4 from the cytoplasm and the nucleus to the cytoskeleton to colocalize with Bcr-Abl. In addition, expression of Grb4 with kinase-active Bcr-Abl resulted in a redistribution of actin-associated Bcr-Abl. Finally, coexpression of Grb4 and oncogenic v-Abl strongly inhibited v-Abl–induced AP-1 activation. Together, these data indicate that Grb4 in conjunction with Bcr-Abl may be capable of modulating the cytoskeletal structure and negatively interfering with the signaling of oncogenic Abl kinases. Grb4 may therefore play a role in the molecular pathogenesis of chronic myelogenous leukemia. (Blood. 2000;96:618-624)


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4994
Author(s):  
Giovannina Barisciano ◽  
Manuela Leo ◽  
Livio Muccillo ◽  
Erica Pranzini ◽  
Matteo Parri ◽  
...  

miR-27a plays a driver role in rewiring tumor cell metabolism. We searched for new miR-27a targets that could affect mitochondria and identified FOXJ3, an apical factor of mitochondrial biogenesis. We analyzed FOXJ3 levels in an in vitro cell model system that was genetically modified for miR-27a expression and validated it as an miR-27a target. We showed that the miR-27a/FOXJ3 axis down-modulates mitochondrial biogenesis and other key members of the pathway, implying multiple levels of control. As assessed by specific markers, the miR-27a/FOXJ3 axis also dysregulates mitochondrial dynamics, resulting in fewer, short, and punctate organelles. Consistently, in high miR-27a-/low FOXJ3-expressing cells, mitochondria are functionally characterized by lower superoxide production, respiration capacity, and membrane potential, as evaluated by OCR assays and confocal microscopy. The analysis of a mouse xenograft model confirmed FOXJ3 as a target and suggested that the miR-27a/FOXJ3 axis affects mitochondrial abundance in vivo. A survey of the TCGA-COADREAD dataset supported the inverse relationship of FOXJ3 with miR-27a and reinforced cellular component organization or biogenesis as the most affected pathway. The miR-27a/FOXJ3 axis acts as a central hub in regulating mitochondrial homeostasis. Its discovery paves the way for new therapeutic strategies aimed at restraining tumor growth by targeting mitochondrial activities.


1987 ◽  
Vol 88 (1) ◽  
pp. 65-72
Author(s):  
T.D. Littlewood ◽  
D.C. Hancock ◽  
G.I. Evan

The formation of an insoluble complex in isolated nuclei incubated at physiological temperature (37 degrees C) is demonstrated. A similar complex is shown to form in the nuclei of intact cells subjected to temperatures that induce the classical heat-shock response. The formation of this complex occurs rapidly in response to hyperthermia and is induced by small increases in temperature both in vitro and in vivo. We have characterized the formation of the complex in isolated nuclei and the nuclei of intact cells. A small number of the subset of nuclear proteins involved in the complex have been identified. The significance of the loss of solubility of these proteins in the nucleus following hyperthermia is discussed.


2019 ◽  
Vol 133 (20) ◽  
pp. 2045-2059 ◽  
Author(s):  
Da Zhang ◽  
Xiuli Wang ◽  
Siyao Chen ◽  
Selena Chen ◽  
Wen Yu ◽  
...  

Abstract Background: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. Methods: Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. Results: We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. Conclusion: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.


1997 ◽  
Vol 77 (06) ◽  
pp. 1182-1188 ◽  
Author(s):  
Ulrich M Vischer ◽  
Claes B Wollheinn

Summaryvon Willebrand factor (vWf) is released from endothelial cell storage granules after stimulation with thrombin, histamine and several other agents that induce an increase in cytosolic free calcium ([Ca2+]i). In vivo, epinephrine and the vasopressin analog DDAVP increase vWf plasma levels, although they are thought not to induce vWf release from endothelial cells in vitro. Since these agents act via a cAMP-dependent pathway in responsive cells, we examined the role of cAMP in vWf secretion from cultured human umbilical vein endothelial cells. vWf release increased by 50% in response to forskolin, which activates adenylate cyclase. The response to forskolin was much stronger when cAMP degradation was blocked with IBMX, an inhibitor of phosphodiesterases (+200%), whereas IBMX alone had no effect. vWf release could also be induced by the cAMP analogs dibutyryl-cAMP (+40%) and 8-bromo-cAMP (+25%); although their effect was weak, they clearly potentiated the response to thrombin. Epinephrine (together with IBMX) caused a small, dose-dependent increase in vWf release, maximal at 10-6 M (+50%), and also potentiated the response to thrombin. This effect is mediated by adenylate cyclase-coupled β-adrenergic receptors, since it is inhibited by propranolol and mimicked by isoproterenol. In contrast to thrombin, neither forskolin nor epinephrine caused an increase in [Ca2+]j as measured by fura-2 fluorescence. In addition, the effects of forskolin and thrombin were additive, suggesting that they act through distinct signaling pathways. We found a close correlation between cellular cAMP content and vWf release after stimulation with epinephrine and forskolin. These results demonstrate that cAMP-dependent signaling events are involved in the control of exocytosis from endothelial cells (an effect not mediated by an increase in [Ca2+]i) and provide an explanation for epinephrine-induced vWf release.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Sign in / Sign up

Export Citation Format

Share Document