Presence and distribution of specific prosome antigens change as a function of embryonic development and tissue-type differentiation in Pleurodeles waltl

1988 ◽  
Vol 90 (4) ◽  
pp. 555-567 ◽  
Author(s):  
J.K. Pal ◽  
P. Gounon ◽  
M.F. Grossi de Sa ◽  
K. Scherrer

The prosomes, biochemically well characterized small RNA-protein complexes, found associated with mRNA in all eukaryotic cells tested, have been identified as maternal components in sea urchin and chick embryos. In this study, we investigated their presence and cytolocalization in the oocytes and embryos of Pleurodeles waltl by immunoblot analysis and immunofluorescence, using monoclonal antibodies prepared against duck prosome proteins. Of the four antibodies tested, three recognized the corresponding antigens in oocyte total protein extracts. Immunofluorescence analysis, using the three prosomal antibodies, demonstrated a drastic change in the localization of the prosome antigens, which changed from the cytoplasm to the nucleus during oogenesis. In the nucleus, in diplotene stages, prosomal antigens appeared to be associated with the lampbrush chromosomes and the nuclear matrix. During embryogenesis, the subcellular distribution of the prosome antigens was a function of development and differentiation: in the cleavage stages up to the mid-blastula they were localized in the cytoplasm and on the plasma membrane, while in the late blastula, gastrula and neurula they were in the nucleus. Interestingly, one of the prosome antigens, p31K, was found to be in a different location in certain cells in the animal pole of the mid-blastula and was absent in the neural tissue in the neurula. In still later stages, in the free-swimming larva, all three antigens were localized in the cytoplasm, specifically in certain cell types in the epidermal tissues. Furthermore, they were sectorially distributed in the cytoplasm. These data taken together indicate the possible presence of tissue-type-specific prosome antigens in Pleurodeles. Differentiation-dependent subcellular localization of the prosome antigens suggests a cell-compartment-related multiple function of prosomes.

Development ◽  
1987 ◽  
Vol 100 (1) ◽  
pp. 147-161 ◽  
Author(s):  
D.L. Shi ◽  
M. Delarue ◽  
T. Darribere ◽  
J.F. Riou ◽  
J.C. Boucaut

The capacity for extension of the dorsal marginal zone (DMZ) in Pleurodeles waltl gastrulae was studied by scanning electron microscopy and grafting experiments. At the onset of gastrulation, the cells of the animal pole (AP) undergo important changes in shape and form a single layer. As gastrulation proceeds, the arrangement of cells also changes in the noninvoluted DMZ: radial intercalation leads to a single layer of cells. Grafting experiments involving either AP or DMZ explants were performed using a cell lineage tracer. When rotated 90 degrees or 180 degrees, grafted DMZ explants were able to involute normally and there was extension according to the animal-vegetal axis of the host. In contrast, neither single nor bilayered explants from AP involutes completely, and neither extends when grafted in place of the DMZ. Furthermore, when inside of the host, these AP grafts curl up and inhibit the closure of the blastopore. Once transplanted to the AP region, the DMZ showed no obvious autonomous extension. DMZs cultured in vitro showed little extension and this only from the late gastrula stage onward. Removal of blastocoel roof blocked involution to a varied extent, depending on the developmental stage of the embryos. From these results, it is argued that differences could well exist in the mechanism of gastrulation between anuran and urodele embryos. That migrating mesodermal cells play a major role in urodele gastrulation is discussed.


1987 ◽  
Vol 105 (5) ◽  
pp. 2083-2094 ◽  
Author(s):  
G P Leser ◽  
T E Martin

Mammalian heterogeneous nuclear RNP (hnRNP) subcomplexes are shown to be comprised of 14-17 basic A and B core group polypeptides (chrp) when subjected to two-dimensional immunoblot analysis. These proteins are normally confined to the nucleus but are distributed throughout the cell during mitosis. However, not all of the 17 protein spots are observed for all stages of the cell cycle. HeLa cell populations have been synchronized and the basic hnRNP core protein complement examined during S, G2, mitosis, and G1. During cell division several distinct chrp polypeptide species at 35 and 37 kD appear, while another of 37 kD and a chrp of 38 kD are diminished. These altered chrp complements are not due to any effects induced by thymidine treatment but appear to be physiological changes in the chrp polypeptide modification state. The new charge isomers found during mitosis are not the result of selective phosphorylation of the chrp polypeptides. However the nature of the modifications has yet to be determined. The mitosis-specific modified forms of the chrp polypeptides are found in the cytoplasmic fraction derived from mitotic cell populations. When this fraction is centrifuged upon sucrose density gradients the modified chrp polypeptides sediment from 30-200S in a distribution similar to that of hnRNP complexes isolated from the nuclei of randomly dividing cell populations. RNase digestion experiments indicate that the general substructure of the RNA/protein complexes in mitotic cell cytoplasm is similar to that of nuclear hnRNP isolated from unsynchronized cells or tissue.


2018 ◽  
Author(s):  
Tianyu Zhu ◽  
Shijie C Zheng ◽  
Dirk S. Paul ◽  
S. Horvath ◽  
Andrew E. Teschendorff

AbstractAge-associated DNA methylation changes have been widely reported across many different tissue and cell types. Epigenetic ‘clocks’ that can predict chronological age with a surprisingly high degree of accuracy appear to do so independently of tissue and cell-type, suggesting that a component of epigenetic drift is cell-type independent. However, the relative amount of age-associated DNAm changes that are specific to a cell or tissue type versus the amount that occurs independently of cell or tissue type is unclear and a matter of debate, with a recent study concluding that most epigenetic drift is tissue-specific. Here, we perform a novel comprehensive statistical analysis, including matched multi cell-type and multi-tissue DNA methylation profiles from the same individuals and adjusting for cell-type heterogeneity, demonstrating that a substantial amount of epigenetic drift, possibly over 70%, is shared between significant numbers of different tissue/cell types. We further show that ELOVL2 is not unique and that many other CpG sites, some mapping to genes in the Wnt and glutamate receptor signaling pathways, are altered with age across at least 10 different cell/tissue types. We propose that while most age-associated DNAm changes are shared between cell-types that the putative functional effect is likely to be tissue-specific.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhiqiang Deng ◽  
Xiaoting Zhou ◽  
Jia-Hong Lu ◽  
Zhenyu Yue

AbstractAutophagy is a cell self-digestion pathway through lysosome and plays a critical role in maintaining cellular homeostasis and cytoprotection. Characterization of autophagy related genes in cell and animal models reveals diverse physiological functions of autophagy in various cell types and tissues. In central nervous system, by recycling injured organelles and misfolded protein complexes or aggregates, autophagy is integrated into synaptic functions of neurons and subjected to distinct regulation in presynaptic and postsynaptic neuronal compartments. A plethora of studies have shown the neuroprotective function of autophagy in major neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). Recent human genetic and genomic evidence has demonstrated an emerging, significant role of autophagy in human brain development and prevention of spectrum of neurodevelopmental disorders. Here we will review the evidence demonstrating the causal link of autophagy deficiency to congenital brain diseases, the mechanism whereby autophagy functions in neurodevelopment, and therapeutic potential of autophagy.


Author(s):  
G. Rowden ◽  
M. G. Lewis ◽  
T. M. Phillips

Langerhans cells of mammalian stratified squamous epithelial have proven to be an enigma since their discovery in 1868. These dendritic suprabasal cells have been considered as related to melanocytes either as effete cells, or as post divisional products. Although grafting experiments seemed to demonstrate the independence of the cell types, much confusion still exists. The presence in the epidermis of a cell type with morphological features seemingly shared by melanocytes and Langerhans cells has been especially troublesome. This so called "indeterminate", or " -dendritic cell" lacks both Langerhans cells granules and melanosomes, yet it is clearly not a keratinocyte. Suggestions have been made that it is related to either Langerhans cells or melanocyte. Recent studies have unequivocally demonstrated that Langerhans cells are independent cells with immune function. They display Fc and C3 receptors on their surface as well as la (immune region associated) antigens.


1992 ◽  
Vol 68 (02) ◽  
pp. 165-169 ◽  
Author(s):  
Timothy R Hare ◽  
Stephen J Gardell

SummaryVampire bat salivary plasminogen activator (BatPA), human tissue-type plasminogen activator (tPA) or streptokinase (SK) were incubated in human citrated plasma containing a plasma clot that was radiolabelled with iodine-125 fibrin(ogen). Complete clot dissolution by BatPA (30 nM) was associated with slight activation of “fluid phase” plasminogen; the plasma levels of functional fibrinogen and α2-antiplasmin decreased by only 8 and 19%, respectively. Addition of SK (3,600 IU/ml) to the clot-containing plasma caused complete clot lysis and massive activation of the “fluid phase” plasminogen, leading to >60 and 96% decreases of the functional levels of fibrinogen and α2-antiplasmin, respectively. Incubation of tPA (30 nM) in clot-containing plasma caused complete clot lysis as well as substantial activation of “fluid phase” plasminogen; the plasma levels of functional fibrinogen and α2-antiplasmin decreased by 45 and 79%, respectively. The profound degradation of fibrinogen in the SK and tPA but not BatPA-containing samples was confirmed by immunoblot analysis. Additional experiments showed that the presence of soluble clot lysate in plasma containing tPA enhanced the extent of fibrinogen degradation from 25% to >60%; the addition of soluble clot lysate to the plasma containing BatPA did not prompt further fibrinogen degradation. Finally, studies using exogenous α2-antiplasmin suggested that plasmin generated via tPA-mediated activation of “fluid phase” plasminogen does not play an important role in clot dissolution.


2020 ◽  
Vol 7 (6) ◽  
pp. 192136 ◽  
Author(s):  
Mats Olsson ◽  
Nicholas J. Geraghty ◽  
Erik Wapstra ◽  
Mark Wilson

Telomeres are repeat sequences of non-coding DNA-protein molecules that cap or intersperse metazoan chromosomes. Interest in telomeres has increased exponentially in recent years, to now include their ongoing dynamics and evolution within natural populations where individuals vary in telomere attributes. Phylogenetic analyses show profound differences in telomere length across non-model taxa. However, telomeres may also differ in length within individuals and between tissues. The latter becomes a potential source of error when researchers use different tissues for extracting DNA for telomere analysis and scientific inference. A commonly used tissue type for assessing telomere length is blood, a tissue that itself varies in terms of nuclear content among taxa, in particular to what degree their thrombocytes and red blood cells (RBCs) contain nuclei or not. Specifically, when RBCs lack nuclei, leucocytes become the main source of telomeric DNA. RBCs and leucocytes differ in lifespan and how long they have been exposed to ‘senescence' and erosion effects. We report on a study in which cells in whole blood from individual Australian painted dragon lizards ( Ctenophorus pictus ) were identified using flow cytometry and their telomere length simultaneously measured. Lymphocyte telomeres were on average 270% longer than RBC telomeres, and in azurophils (a reptilian monocyte), telomeres were more than 388% longer than those in RBCs. If this variation in telomere length among different blood cell types is a widespread phenomenon, and DNA for comparative telomere analyses are sourced from whole blood, evolutionary inference of telomere traits among taxa may be seriously complicated by the blood cell type comprising the main source of DNA.


1985 ◽  
Vol 260 (21) ◽  
pp. 11781-11786
Author(s):  
R Kole ◽  
L D Fresco ◽  
J D Keene ◽  
P L Cohen ◽  
R A Eisenberg ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6287
Author(s):  
Hendrik Reuper ◽  
Benjamin Götte ◽  
Lucy Williams ◽  
Timothy J. C. Tan ◽  
Gerald M. McInerney ◽  
...  

Stress granules (SGs) are dynamic RNA–protein complexes localized in the cytoplasm that rapidly form under stress conditions and disperse when normal conditions are restored. The formation of SGs depends on the Ras-GAP SH3 domain-binding protein (G3BP). Formations, interactions and functions of plant and human SGs are strikingly similar, suggesting a conserved mechanism. However, functional analyses of plant G3BPs are missing. Thus, members of the Arabidopsis thaliana G3BP (AtG3BP) protein family were investigated in a complementation assay in a human G3BP knock-out cell line. It was shown that two out of seven AtG3BPs were able to complement the function of their human homolog. GFP-AtG3BP fusion proteins co-localized with human SG marker proteins Caprin-1 and eIF4G1 and restored SG formation in G3BP double KO cells. Interaction between AtG3BP-1 and -7 and known human G3BP interaction partners such as Caprin-1 and USP10 was also demonstrated by co-immunoprecipitation. In addition, an RG/RGG domain exchange from Arabidopsis G3BP into the human G3BP background showed the ability for complementation. In summary, our results support a conserved mechanism of SG function over the kingdoms, which will help to further elucidate the biological function of the Arabidopsis G3BP protein family.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanyu Zhang ◽  
Ruoyi Cai ◽  
James Dai ◽  
Wei Sun

AbstractWe introduce a new computational method named EMeth to estimate cell type proportions using DNA methylation data. EMeth is a reference-based method that requires cell type-specific DNA methylation data from relevant cell types. EMeth improves on the existing reference-based methods by detecting the CpGs whose DNA methylation are inconsistent with the deconvolution model and reducing their contributions to cell type decomposition. Another novel feature of EMeth is that it allows a cell type with known proportions but unknown reference and estimates its methylation. This is motivated by the case of studying methylation in tumor cells while bulk tumor samples include tumor cells as well as other cell types such as infiltrating immune cells, and tumor cell proportion can be estimated by copy number data. We demonstrate that EMeth delivers more accurate estimates of cell type proportions than several other methods using simulated data and in silico mixtures. Applications in cancer studies show that the proportions of T regulatory cells estimated by DNA methylation have expected associations with mutation load and survival time, while the estimates from gene expression miss such associations.


Sign in / Sign up

Export Citation Format

Share Document