Pectoral fin locomotion in the striped surfperch. I. Kinematic effects of swimming speed and body size

1996 ◽  
Vol 199 (10) ◽  
pp. 2235-2242 ◽  
Author(s):  
E Drucker ◽  
J Jensen

Swimming trials at increasing velocity were used to determine the effects of steady swimming speed on pectoral fin kinematics for an ontogenetic series of striped surfperch Embiotoca lateralis, ranging from 6 to 23 cm in standard length (SL). The fin stroke cycle consisted of a propulsive period, the duration of fin abduction and adduction, and a 'refractory' period, during which the fin remained adducted against the body. Pectoral fin-beat frequency (fp) measured as the inverse of the entire stride period, as in past studies, increased curvilinearly with speed. Frequency, calculated as the reciprocal of the propulsive period alone, increased linearly with speed, as shown previously for tail-beat frequency of fishes employing axial undulation. Fin-beat amplitude, measured as the vertical excursion of the pectoral fin tip during abduction, increased over a limited range of low speeds before reaching a plateau at 0.35­0.40 SL. Pectoral fin locomotion was supplemented by intermittent caudal fin undulation as swimming speed increased. At the pectoral­caudal gait transition speed (Up-c), frequency and amplitude attained maxima, suggesting that the fin musculature reached a physiological limit. The effects of body size on swimming kinematics differed according to the method used for expressing speed. At a given absolute speed, small fish used higher stride frequencies and increased frequency at a faster rate than large fish. In contrast, the relationship between fp and length-specific speed (SL s-1) had a greater slope for large fish and crossed that for small fish at high speeds. We recommend that comparisons across size be made using speeds expressed as a percentage of Up-c, at which kinematic variables influencing thrust are size-independent.

1996 ◽  
Vol 199 (10) ◽  
pp. 2243-2252 ◽  
Author(s):  
E Drucker ◽  
J Jensen

In this study, we report the first allometric equations relating gait parameters and swimming speed to body size for fish employing pectoral fin locomotion. Comparisons of locomotor kinematics and performance among striped surfperch (Teleostei: Embiotocidae) are made at the pectoral­caudal gait transition speed (Up-c). Up-c is considered to elicit physiologically equivalent levels of exercise in animals varying over 100-fold in body mass (Mb) by virtue of dynamically similar pectoral fin movements (constant duty factor, length-specific stride length and fin-beat amplitude) and size-independent propulsive efficiency. At Up-c, pectoral fin-beat frequency scales in proportion to Mb-0.12±0.03, a size-dependence consistent with that observed for stride frequency in fishes swimming by axial undulatory propulsion and in many running tetrapods. It is proposed that the similarity in the scaling of frequency in these vertebrate groups reflects an underlying similarity in the allometry of the maximal velocity of muscle shortening. Absolute Up-c (m s-1) generally increases with body size, but the fastest speeds are not exhibited by the largest animals. A pattern of declining performance in fish 23 cm in standard length and longer may be related to their disproportionately small fin areas and aspect ratios. The pronounced negative allometry of Up-c expressed as standard body lengths per second indicates that a given length-specific speed does not induce comparable levels of activity in large and small fish. Thus, normalization of swimming speed to body length may not be a sufficient correction for kinematic comparisons across size.


2008 ◽  
Vol 65 (7) ◽  
pp. 1191-1197 ◽  
Author(s):  
A. Bang ◽  
P. Grønkjær ◽  
B. Lorenzen

Abstract Bang, A., Grønkjær, P., and Lorenzen, B. 2008. The relation between concentrations of ovarian trace elements and the body size of Atlantic cod Gadus morhua. – ICES Journal of Marine Science, 65: 1191–1197. Trace metals in the ovaries of fish are transferred from the female via the yolk to the offspring, which makes the early life stages susceptible to deleterious effects of potentially toxic elements contained in the ovaries. Here, the concentrations of 13 elements from the ovaries of 133 ripe female North Sea cod Gadus morhua weighing 0.2–18 kg were correlated with female size, accounting for differences in maturity and condition. Most elements were negatively correlated with the size variables weight, length and, especially, ovarian dry weight. Further, they were negatively correlated with maturity and condition. Many of the trace elements showed true size-dependence, but the correlations were generally weak. A linear discriminant analysis separated “small” and “large” fish at a length of 85 cm based on concentrations of Co, Mn, Se, and Zn, and correctly assigned 78 of 102 small fish and 23 of 31 large fish to their respective size category. This corresponds to an overall classification success of 75.9%. The results suggest that embryos and early larvae from small females are exposed to higher levels of potentially harmful metals. If the differences in trace element concentration influence survival success, this will add to the negative effects of size distribution truncation and declines in size-at-maturity experienced by many populations of cod.


1973 ◽  
Vol 59 (3) ◽  
pp. 697-710 ◽  
Author(s):  
P. W. WEBB

1. The kinematics of pectoral-fin propulsion have been measured for Cymatogaster aggregata, 14·3 cm in length, during an increasing-velocity performance test. Acclimation and test temperature was 15 °C, similar to the fishes' normal environmental temperature for the time of year of the tests. 2. Locomotion was in the labriform mode. Within this mode two pectoral-fin patterns were observed, differing only in the details of fin kinematics. These differences resulted from the length of the propagated wave passed over the fin. At low swimming speeds, up to about 2 L/sec, the wavelength was relatively short, approximately twice the length of the trailing edge of the fin. At higher speeds, a wave of very much longer wavelength was passed over the fin. 3. The pectoral fin-beat cycle was divisible into abduction, adduction and refractory phases. Abduction and adduction phases were of equal duration, and the proportion of time occupied by these phases increased with swimming speed. The duration of the refractory phase decreased with increasing speed. 4. The kinematics indicated that thrust was generated throughout abduction and adduction phases, together with lift forces that cancelled out over a complete cycle. As a result of lift forces and the refractory phase the body moved in a figure-8 motion relative to the flow. 5. Pectoral fin-beat frequency and amplitude increased with swimming speed, and the product of frequencyxamplitude was linearly related to swimming speed. 6. Interactions between pectoral fin-beat frequency, amplitude, refractory phase and kinematic patterns were interpreted as a mechanism to permit the propulsive muscles to operate at optimum efficiency and power output over a wider range of swimming speeds than would otherwise be possible. 7. Pectoral-fin propulsion was augmented by caudal-fin propulsion only at swimming speeds greater than 3·4 L/sec. 8. The mean 45 min critical swimming speed was 3·94 L/sec, and compares favourably with similar levels of activity for fish swimming by means of body and caudal-fin movements.


1994 ◽  
Vol 189 (1) ◽  
pp. 133-161 ◽  
Author(s):  
A Gibb ◽  
B Jayne ◽  
G Lauder

The pectoral fins of ray-finned fishes are flexible and capable of complex movements, and yet little is known about the pattern of fin deformation during locomotion. For the most part, pectoral fins have been modeled as rigid plates. In order to examine the movements of different portions of pectoral fins, we quantified the kinematics of pectoral fin locomotion in the bluegill sunfish Lepomis macrochirus using several points on the distal fin edge and examined the effects of swimming speed on fin movements. We simultaneously videotaped the ventral and lateral views of pectoral fins of four fish swimming in a flow tank at five speeds ranging from 0.3 to 1.1 total lengths s-1. Four markers, placed on the distal edge of the fin, facilitated field-by-field analysis of kinematics. We used analyses of variance to test for significant variation with speed and among the different marker positions. Fin beat frequency increased significantly from 1.2 to 2.1 Hz as swimming speed increased from 0.3 to 1.0 total lengths s-1. Maximal velocities of movement for the tip of the fin during abduction and adduction generally increased significantly with increased swimming speed. The ratio of maximal speed of fin retraction to swimming speed declined steadily from 2.75 to 1.00 as swimming speed increased. Rather than the entire distal edge of the fin always moving synchronously, markers had phase lags as large as 32 with respect to the dorsal edge of the fin. The more ventral and proximal portions of the fin edge usually had smaller amplitudes of movement than did the more dorsal and distal locations. With increased swimming speed, the amplitudes of the lateral and longitudinal fin movements generally decreased. We used two distal markers and one basal reference point to determine the orientation of various planar fin elements. During early adduction and most of abduction, these planar fin elements usually had positive angles of attack. Because of fin rotation, angles of attack calculated from three-dimensional data differed considerably from those estimated from a simple lateral projection. As swimming speed increased, the angles of attack of the planar fin elements with respect to the overall direction of swimming approached zero. The oscillatory movements of the pectoral fins of bluegill suggest that both lift- and drag-based propulsive mechanisms are used to generate forward thrust. In addition, the reduced frequency parameter calculated for the pectoral fin of Lepomis (sigma=0.85) and the Reynolds number of 5x10(3) indicate that acceleration reaction forces may contribute significantly to thrust production and to the total force balance on the fin.


2001 ◽  
Vol 204 (2) ◽  
pp. 379-394 ◽  
Author(s):  
L.J. Rosenberger

This study explores the dichotomy between undulatory (passing multiple waves down the fin or body) and oscillatory (flapping) locomotion by comparing the kinematics of pectoral fin locomotion in eight species of batoids (Dasyatis americana, D. sabina, D. say, D. violacea, Gymnura micrura, Raja eglanteria, Rhinobatos lentiginosus and Rhinoptera bonasus) that differ in their swimming behavior, phylogenetic position and lifestyle. The goals of this study are to describe and compare the pectoral fin locomotor behavior of the eight batoid species, to clarify how fin movements change with swimming speed for each species and to analyze critically the undulation/oscillation continuum proposed by Breder using batoids as an example. Kinematic data were recorded for each species over a range of swimming velocities (1–3 disc lengths s(−1)). The eight species in this study vary greatly in their swimming modes. Rhinobatos lentiginosus uses a combination of axial-based and pectoral-fin-based undulation to move forward through the water, with primary thrust generated by the tail. The pectoral fins are activated in short undulatory bursts for increasing swimming speed and for maneuvering. Raja eglanteria uses a combination of pectoral and pelvic locomotion, although only pectoral locomotion is analyzed here. The other six species use pectoral locomotion exclusively to propel themselves through the water. Dasyatis sabina and D. say have the most undulatory fins with an average of 1.3 waves per fin length, whereas Rhinoptera bonasus has the most oscillatory fin behavior with 0.4 waves per fin length. The remaining species range between these two extremes in the degree of undulation present on their fins. There is an apparent trade-off between fin-beat frequency and amplitude. Rhinoptera bonasus has the lowest frequency and the highest fin amplitude, whereas Rhinobatos lentiginosus has the highest frequency and the lowest amplitude among the eight species examined. The kinematic variables that batoids modify to change swimming velocity vary among different species. Rhinobatos lentiginosus increases its tail-beat frequency to increase swimming speed. In contrast, the four Dasyatis species increase swimming speed by increasing frequency and wavespeed, although D. americana also changes wave number. Raja eglanteria modifies its swimming velocity by changing wavespeed and wave number. Rhinoptera bonasus increases wavespeed, Gymnura micrura decreases wave number, and both Rhinoptera bonasus and Gymnura micrura increase fin-tip velocity to increase swimming velocity. Batoid species fall onto a continuum between undulation and oscillation on the basis of the number of waves present on the fins.


1990 ◽  
Vol 151 (1) ◽  
pp. 175-192 ◽  
Author(s):  
JEFFREY B. GRAHAM ◽  
HEIDI DEWAR ◽  
N. C. LAI ◽  
WILLIAM R. LOWELL ◽  
STEVE M. ARCE

A large, sea-going water tunnel was used in various studies of shark swimming performance. The critical swimming velocity (Ucrit, an index of aerobically sustainable swimming speed) of a 70 cm long lemon shark (Negaprion brevirostris Poey) was determined to be 1.1 Ls−1, where L is body length. The Ucrit of the leopard shark (Triakis semifasciata Girard) was found to vary inversely with body size; from about 1.6Ls−1in 30–50cm sharks to 0.6LS−1 in 120cm sharks. Large Triakis adopt ram gill ventilation at swimming speeds between 27 and 60cms−1, which is similar to the speed at which this transition occurs in teleosts. Analyses of tail-beat frequency (TBF) in relation to velocity and body size show that smaller Triakis have a higher TBF and can swim at higher relative speeds. TBF, however, approaches a maximal value at speeds approaching Ucrit, suggesting that red muscle contraction velocity may limit sustained swimming speed. The TBF of both Triakis and Negaprion rises at a faster rate with swimming velocity than does that of the more thunniform mako shark (Isurus oxyrinchus Rafinesque). This is consistent with the expectation that, at comparable relative speeds, sharks adapted for efficient swimming should have a lower TBF. The rates of O2 consumption of swimming lemon and mako sharks are among the highest yet measured for elasmobranchs and are comparable to those of cruise-adapted teleosts.


1993 ◽  
Vol 71 (11) ◽  
pp. 2319-2326 ◽  
Author(s):  
Paolo Domenici ◽  
Robert W. Blake

Angelfish (Pterophyllum eimekei) employ two types of fast-starts, single bend (SB) and double bend (DB). Higher performance (distance travelled, velocity, acceleration) and smaller angles of turn are found in DB responses than in SB responses. The percentage of DB responses is inversely related to body size. Small fish employ DB responses for all escape angles, whereas larger fish commonly show SB responses. This is due to a decrease in maximum DB escape angles for larger fish. Escape angles for pooled SB and DB responses are size-independent. Distance covered within a given time, maximum velocity, and maximum acceleration for pooled SB and DB responses are size-independent. With the exception of the smallest fish, angelfish show submaximal performance when making large turns. We suggest that angelfish employ a particular type of response depending on their predators' strike angle. Extremely small and large fish use principally DB and SB responses, respectively. The employment of SB and DB responses in small and large fish, respectively, may be restricted to a narrow range of predator strike angles.


2007 ◽  
Vol 58 (3) ◽  
pp. 233 ◽  
Author(s):  
J. L. Johansen ◽  
C. J. Fulton ◽  
D. R. Bellwood

Sustained swimming ability can play a critical role in the ecology of fishes, particularly in terms of their distribution among habitats of differing flow conditions. However, the relative utility of various measures of swimming ability remains to be determined. The present study assessed the swimming speed performances of coral reef fishes using a range of experimental methods. This included a novel technique that measures the speed at which labriform fishes change gait from purely pectoral to pectoral-and-caudal propulsion over sustained time scales of >200 min (termed Up–nE). Measures of Up–cE were compared with two commonly used experimental metrics: critical swimming speed (Ucrit) and critical transition speed (Up–c). All three methods revealed consistent differences among taxa, and provided a reliable means of comparing swimming speed performances. Notably, two experimental measures (Up–c and Up–cE) appeared to more closely reflect the swimming speeds displayed by the same coral reef fishes in the field.


1994 ◽  
Vol 51 (3) ◽  
pp. 603-616 ◽  
Author(s):  
L. Scott Forbes ◽  
Randall M. Peterman

Growing evidence suggests that in Pacific salmon (Oncorhynchus spp.), components of reproductive success besides fecundity are size dependent. However, managers setting escapement goals usually estimate reproductive potential of a stock in terms of total number of spawners, number of female spawners, or potential egg deposition given a mean size of spawners. Interannual variation in size composition of spawners may thus result in errors in assessing reproductive potential. Here, we develop models of recruitment and harvest and determine optimal size-selective harvesting strategies. These optimal strategies range from the current large-fish harvests (larger-than-average fish are caught, leaving smaller fish to spawn) to small-fish harvests, where the reverse is true. If the body mass (M) of individual spawners increases more rapidly than reproductive success (RS) with respect to increasing length of adult females (e.g., if number of eggs alone best measures RS), then sustainable biomass yield is maximized by the current large-fish harvest. However, if RS/M increases with increasing length of females (e.g., if total biomass of eggs best measures RS), then small-fish harvest maximizes sustainable yield. Evidence suggests that some salmon populations show this latter pattern; thus, large-fish harvests may generate suboptimal yields.


Sign in / Sign up

Export Citation Format

Share Document