An Experimental Determination of the Relationship between Lift and Aerodynamic Power in Calliphora Erythrocephala and Phormia Regina

1972 ◽  
Vol 56 (1) ◽  
pp. 31-36
Author(s):  
JAMES WOOD

Lift and aerodynamic power were calculated for Calliphora and Phormia using assumptions which maximized and minimized the ratio of aerodynamic power to lift. The ratios of aerodynamic power to lift calculated by these methods, which do not rely on the assumption that steady-state aerodynamics applies to insect flight, are in agreement with results calculated by others using steady-state aerodynamics.

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
George G. Adams ◽  
Palaniappan Nagappan ◽  
Nicol E. McGruer

A simple method to determine the frictional interaction between a carbon nanotube (CNT) and a substrate is analyzed for feasibility. In this technique an atomic force microscope (AFM) tip is used to drag a CNT along a substrate. Then the deformed shape of the CNT can be viewed either with the AFM or in a scanning electron microscope. An analysis of the steady-state deformed shape allows the determination of the frictional interactions, which occurred during dragging. It is important to quantify these interactions in a variety of potential applications of nanotechnology. In one such example, a CNT based nanoswitch consists of a CNT bridging over a trench. Actuation of the CNT causes it to stretch and can lead to partial slip at the interface. This slip causes hysteresis, which has been observed in the mechanical actuation of a CNT bridge. In this paper continuum level modeling of the frictional interaction is used to determine the relationship between the steady-state deformed shape of the CNT and the frictional interaction, which occurred between the CNT and substrate during dragging. The model and analysis indicate that this method should be feasible for CNTs with aspect ratios approximately in the 100–250 range.


1963 ◽  
Vol 7 (04) ◽  
pp. 24-41
Author(s):  
Guido E. Ransleben ◽  
H. Norman Abramson

Measured span wise distributions of steady state and oscillatory lift and moment on fully submerged cantilever hydrofoils are presented. The hydrofoils were of aspect ratio 5 rectangular platform, and were towed at speeds sufficiently low to avoid cavitation. The data are compared with theoretical predictions and wind-tunnel data previously obtained at higher values of reduced velocity.


1978 ◽  
Vol 13 (1) ◽  
pp. 29-34 ◽  
Author(s):  
R N Roth

A new experimental method is presented for determining trajectories of flow for non-steady-state processes which exhibit geometric similarity (quasi-steady-state processes (1)∗). One process that is normally regarded as quasi-steady-state (plane strain wedge indentation) is investigated using this method. It is shown that this process satisfies the requirements of geometric similarity within experimental accuracy. Results are presented for wedge angles of 30°, 60° and 90° and a range of indentation depths up to approximately 3 mm. Finally, it is suggested how this method can be combined with well-known orthogonal-grid techniques to provide information for the calculation of effective strains throughout the deforming region.


1970 ◽  
Vol 5 (3) ◽  
pp. 193-199 ◽  
Author(s):  
E Ollerton ◽  
R Pigott

An experimental technique has been developed to allow the rapid determination of adhesion and slip areas in steady-state rolling contact. The technique consists in rolling solid black-rubber toroids on a ground-glass plate under carefully controlled conditions. It enables the division of the contact area into slip and adhesion areas to be observed and photographed whilst rolling is taking place. A loading frame was devised to enable rolling with longitudinal shearing traction, rolling with transverse creep, and rolling with spin to be investigated either separately or in combinations. The results of the experiments have been compared with existing theories, and some conclusions as to the accuracy of the theories have been made.


Sign in / Sign up

Export Citation Format

Share Document