A Quantitative Analysis of Flagellar Movement in Echinoderm Spermatozoa

1978 ◽  
Vol 76 (1) ◽  
pp. 85-104 ◽  
Author(s):  
YUKIO HIRAMOTO ◽  
SHOJI A. BABA

Computerized analyses were performed on the movement of spermatozoa recorded with a high-speed camera. These provide evidence for active bending waves over the entire length of the flagellum and a single equation for waves in all cases examined. In the equation, the angular direction of the flagellum at any distance from the base is expressed by a sine function of time plus a constant, and thus flagellar waves are ‘sine-generated’. To explain the waves a model was proposed in which the active force required to generate sliding between peripheral microtubules is propagated along and around the flagellar axoneme.

2020 ◽  
Author(s):  
Masako Nakajima ◽  
Kosuke Iizuka ◽  
Noriko Ueki ◽  
Atsuko Isu ◽  
Kenjiro Yoshimura ◽  
...  

ABSTRACTFor organisms that respond to environmental stimuli using taxes, reversal of the tactic sign should be tightly regulated for survival. The biciliate green alga Chlamydomonas reinhardtii is an excellent model for studying reversal between positive and negative phototaxis. C. reinhardtii cells change swimming direction by modulating the balance of beating forces between their two cilia after photoreception at the eyespot; however, it remains unknown how they reverse phototactic sign. In this study, we observed cells undergoing phototactic turns with a high-speed camera and found that two key factors determine the phototactic sign: which of the two cilia beats stronger for phototactic turning and when the strong beating starts. We developed a mathematical model to explain this sign-reversal with a single equation, which suggests that the timing of the strong ciliary beating is regulated by switching between the light-on and light-off responses at the eyespot.


Circuit World ◽  
2016 ◽  
Vol 42 (3) ◽  
pp. 110-116 ◽  
Author(s):  
Hongyan Shi ◽  
Qiuxin Yan ◽  
Shengzhi Chen

Purpose The purpose of this paper is to study the movement characteristics of micro drill bit during entry period in printed circuit board (PCB) high-speed drilling and to present an effective method to conduct quantitative analysis of the wandering of drill bit based on high-speed video capturing. Design/methodology/approach Based on the high-speed camera technology, experiments are conducted to get a series of time sequence images and the wandering of micro drill tip and the radial run-out of drill body, and the max-deformation of drill bit are calculated by using a quantitative analysis method. Finally, the movement characteristics of micro drill bit during entry drilling period PCB high-speed drilling are evaluated. Findings With the increasing spindle speed, the radial run-out of drill body decreases gradually, whereas the wandering amplitude of the drill point gradually increases; micro drill bit itself has an ability of positioning deviation correction after contacting the entry sheet; the feed rate within a certain range could slightly worsen the deformation of drill tip at the instant of impingement. Research limitations/implications With the improvement of spindle speed, the camera’s shooting speed needed will increase accordingly, thus, the resolution of the pictures will decline, which always affects the analysis precision. Originality/value A series of effective methods to conduct quantitative analysis of the wandering micro drill bit by using high-speed camera technology is presented; a reference for the optimization of micro-hole drilling is provided.


Author(s):  
Denys Rozumnyi ◽  
Jan Kotera ◽  
Filip Šroubek ◽  
Jiří Matas

AbstractObjects moving at high speed along complex trajectories often appear in videos, especially videos of sports. Such objects travel a considerable distance during exposure time of a single frame, and therefore, their position in the frame is not well defined. They appear as semi-transparent streaks due to the motion blur and cannot be reliably tracked by general trackers. We propose a novel approach called Tracking by Deblatting based on the observation that motion blur is directly related to the intra-frame trajectory of an object. Blur is estimated by solving two intertwined inverse problems, blind deblurring and image matting, which we call deblatting. By postprocessing, non-causal Tracking by Deblatting estimates continuous, complete, and accurate object trajectories for the whole sequence. Tracked objects are precisely localized with higher temporal resolution than by conventional trackers. Energy minimization by dynamic programming is used to detect abrupt changes of motion, called bounces. High-order polynomials are then fitted to smooth trajectory segments between bounces. The output is a continuous trajectory function that assigns location for every real-valued time stamp from zero to the number of frames. The proposed algorithm was evaluated on a newly created dataset of videos from a high-speed camera using a novel Trajectory-IoU metric that generalizes the traditional Intersection over Union and measures the accuracy of the intra-frame trajectory. The proposed method outperforms the baselines both in recall and trajectory accuracy. Additionally, we show that from the trajectory function precise physical calculations are possible, such as radius, gravity, and sub-frame object velocity. Velocity estimation is compared to the high-speed camera measurements and radars. Results show high performance of the proposed method in terms of Trajectory-IoU, recall, and velocity estimation.


Author(s):  
Bo Wang ◽  
Chi Zhang ◽  
Yuzhen Lin ◽  
Xin Hui ◽  
Jibao Li

In order to balance the low emission and wide stabilization for lean premixed prevaporized (LPP) combustion, the centrally staged layout is preferred in advanced aero-engine combustors. However, compared with the conventional combustor, it is more difficult for the centrally staged combustor to light up as the main stage air layer will prevent the pilot fuel droplets arriving at igniter tip. The goal of the present paper is to study the effect of the main stage air on the ignition of the centrally staged combustor. Two cases of the main swirler vane angle of the TeLESS-II combustor, 20 deg and 30 deg are researched. The ignition results at room inlet temperature and pressure show that the ignition performance of the 30 deg vane angle case is better than that of the 20 deg vane angle case. High-speed camera, planar laser induced fluorescence (PLIF), and computational fluids dynamics (CFD) are used to better understand the ignition results. The high-speed camera has recorded the ignition process, indicated that an initial kernel forms just adjacent the liner wall after the igniter is turned on, the kernel propagates along the radial direction to the combustor center and begins to grow into a big flame, and then it spreads to the exit of the pilot stage, and eventually stabilizes the flame. CFD of the cold flow field coupled with spray field is conducted. A verification of the CFD method has been applied with PLIF measurement, and the simulation results can qualitatively represent the experimental data in terms of fuel distribution. The CFD results show that the radial dimensions of the primary recirculation zone of the two cases are very similar, and the dominant cause of the different ignition results is the vapor distribution of the fuel. The concentration of kerosene vapor of the 30 deg vane angle case is much larger than that of the 20 deg vane angle case close to the igniter tip and along the propagation route of the kernel, therefore, the 30 deg vane angle case has a better ignition performance. For the consideration of the ignition performance, a larger main swirler vane angle of 30 deg is suggested for the better fuel distribution when designing a centrally staged combustor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fukun Wang ◽  
Jianguo Wang ◽  
Li Cai ◽  
Rui Su ◽  
Wenhan Ding ◽  
...  

AbstractTwo special cases of dart leader propagation were observed by the high-speed camera in the leader/return stroke sequences of a classical triggered lightning flash and an altitude-triggered lightning flash, respectively. Different from most of the subsequent return strokes preceded by only one leader, the return stroke in each case was preceded by two leaders occurring successively and competing in the same channel, which herein is named leader-chasing behavior. In one case, the polarity of the latter leader was opposite to that of the former leader and these two combined together to form a new leader, which shared the same polarity with the former leader. In the other case, the latter leader shared the same polarity with the former leader and disappeared after catching up with the former leader. The propagation of the former leader in this case seems not to be significantly influenced by the existence of the latter leader.


Sign in / Sign up

Export Citation Format

Share Document